章节大纲

  • The period in seconds of a pendulum with a length of L  in meters is given by the formula 1 P = 2 π ( L 9.8 ) 1 2 .  If the length of a pendulum is 9.8 8 3 ,  what is its period?
    ::P=2(L9.8)12的公式1给出了长L米的钟摆秒的时段。如果钟摆的时段长度为9.883,其时段是多少?

    In this section, we discuss how to apply the laws of exponents to rational exponents. 
    ::在本节中,我们讨论如何对理性的推论者适用推论者的法律。

    lesson content

    Laws of Exponents
    ::名人法

    When simplifying expressions with rational exponents, all of the laws of exponents are still valid.
    ::当用理性的推手简化表达方式时,推手的所有法律仍然有效。

       Laws of Exponents
    ::名人法

    Product Rule:  a m a n = a m + n
    ::产品规则: AMan=am+n

    Quotient Rule a m a n = a m n
    ::引文规则:aman=am-n

    Power Rule:  ( a m ) n = a m n
    ::权力规则伤心am)n=amn

     

    Other Properties of Note:
    ::注释的其他属性 :

    • ( a b ) n = a n b n  
      :伤心ab)n=anbn
    • ( a b ) n = a n b n ,       b 0  
      :伤心ab)n=anbn,b0
    • a - n = 1 a n ,       a 0   
      ::a-n=1, a=0
    • 1 a - n = a n ,       a 0  
      ::1个a-n=an, a*0

    Notice how the 1st two properties of note relate to properties of radicals that we discussed in a previous section. 
    ::注意我们前一节中讨论过的 与激进分子属性有关的第1个注释属性。

    a b n = ( a b ) 1 n = a 1 n b 1 n = a n b n a b n = ( a b ) 1 n = a 1 n b 1 n = a n b n

    ::abn=(ab)1n=a1nbn1n=anbnabn=(ab)1n=a1nbn1n=anbn

    Example 1
    ::例1

    Simplify.
    ::简化。

    a.  x 1 2 x 3 4 .
    ::a. x12x34。

    b.   4 d 3 5 8 1 3 d 2 5
    ::b. 4d35813d25

    Solution:  a. When two expressions with the same base are multiplied, add the exponents. Here, the exponents do not have the same denominator, so we need to find a common denominator and then add the numerators.
    ::解决方案 : a. 当两个表达式以同一基数乘以时, 加入引号。 这里, 引号没有相同的分母, 所以我们需要找到一个共同的分母, 然后添加数字 。

    x 1 2 x 3 4 = x 2 4 x 3 4 = x 5 4

    ::x12x34=x24x34=x54

    This rational exponent does not reduce, so we are done.
    ::这个理性的推手不会减少,所以我们做到了。

    b. Change 4 and 8 so they are powers of 2 and then add exponents with the same base.
    ::b. 更改4和8,因此其权力为2,然后加上同一基数。

    4 d 3 5 8 1 3 d 2 5 = 2 2 d 3 5 ( 2 3 ) 1 3 d 2 5 = 2 3 d 5 5 = 8 d

    ::4d35813d25=22d35}(23)13d25=23d55=8d

    This video by CK-12 demonstrates how to simplify expressions with rational exponents using the properties of exponents.
    ::CK-12的这段影片展示了如何使用推手的特性, 以理性推手简化表达方式。

      

    Example 2
    ::例2

    Simplify.
    ::简化。

    a. w 7 4 w 1 2
    ::a. w74w12

    b.  4 x 2 3 y 4 16 x 3 y 5 6
    ::b. 4x23y416x3y56

    Solution: 
    ::解决方案 :

    a. This problem uses the Quotient Rule of Exponents. Subtract the exponents. Change the 1 2 power to 2 4 .
    ::a. 这一问题使用指数的引号规则。减法引号。将12功率改为24。

    w 7 4 w 1 2 = w 7 4 2 4 = w 5 4

    ::W74w12=w74-24=w54

    b. Subtract the exponents with the same base and reduce 4 16 .
    ::b. 以同一基数减去指数并减少416。

    4 x 2 3 y 4 16 x 3 y 5 6 = 1 4 x ( 2 3 ) 3 y 4 ( 5 6 ) = 1 4 x ( 2 3 ) ( 9 3 ) y ( 24 6 ) ( 5 6 ) = 1 4 x - 7 3 y 19 6

    ::4x23y416x3y56=14x(23)-3y4-(56)=14x(23)-23-(93)y(246)-(56)=14x-73y196

    If you are writing your answer in terms of positive exponents, your answer would be y 19 6 4 x 7 3 . Also, notice that when a rational exponent is improper we do not change it to a mixed number.
    ::如果你用积极的推理来写你的回答, 你的回答是y1964x73。 另外, 请注意, 当理性推理不当时, 我们不会把它改成混合数字 。

    If we were to write the answer using roots, then we would take out the whole numbers. For example, y = 19 6 can be written as y 19 6 = y 3 y 1 6 = y 3 y 6 because 6 goes into 19 three times with a remainder of 1.
    ::如果我们用根写出答案, 那么我们就会取出整个数字。 例如, y= 196 可以写为y196=y3y16=y3y6, 因为 6 乘以19 3 3 y6 乘以19 3 次, 其余 1 次 。

    Example 3
    ::例3

    Simplify. 
    ::简化。

    a. ( 3 3 2 x 4 y 6 5 ) 4 3
    ::a. (332x4y65)43

    b.   ( 2 x 1 2 y 6 ) 2 3 4 x 5 4 y 9 4
    ::b. (2x12y6)234x54y94

    Solution:
    ::解决方案 :

    a. According to the power rule, apply the 4 3 power to everything inside the " data-term="Parentheses" role="term" tabindex="0"> parentheses and reduce.
    ::a. 根据权力规则,对括号内的所有东西适用43项权力并减少。

    ( 3 3 2 x 4 y 6 5 ) 4 3 = 3 12 6 x 16 3 y 24 15 = 3 2 x 16 3 y 8 5 = 9 x 16 3 y 8 5

    :伤心332x4y65)43=3126x163y2415=32x163y85=9x163y85

    b. In the numerator, the entire expression is raised to the 2 3 power. Distribute this power to everything inside the parentheses. Then, use the Power Rule of Exponents and rewrite 4 as 2 2 .
    ::b. 在分子中,整个表达式被提升到23强。将这种权力分配到括号内的所有东西。然后,使用指数法则,将4改写为22。

    ( 2 x 1 2 y 6 ) 2 3 4 x 5 4 y 9 4 = 2 2 3 x 1 3 y 4 2 2 x 5 4 y 9 4

    :伤心2x12y6) 234x54y94 = 223x1313y422x54y94

    Combine terms with the same base by subtracting the exponents.
    ::减去指数,将条件与同一基数合并。

    2 2 3 x 1 3 y 4 2 2 x 5 4 y 9 4 = ( 2 2 3 2 ) ( x 1 3 5 4 ) ( y 4 9 4 ) = ( 2 2 3 6 3 ) ( x 4 12 15 12 ) ( y 16 4 9 4 ) = 2 - 4 3 x - 11 12 y 7 4

    ::223x13y422x54y94=(223-2)(x13-54)(y4-94)=(223-63)(x412-1512)(y164-94)=2-43x1112y74

    Finally, rewrite the answer with positive exponents by moving the 2 and x into the denominator. y 7 4 2 4 3 x 11 12
    ::最后,将 2 和 x 移动到分母 y74243x1112 中, 重写答案, 以正面的表情重写答案 。

    by Mathispower4u demonstrates how to simplify expressions with rational exponents.
    ::由 Mathispower4u 演示如何简化表达式,

     

     

    Example 4
    ::例4

    The period in seconds of a pendulum with a length of L  in meters is given by the formula 1 P = 2 π ( L 9.8 ) 1 2 . If the length of a pendulum is 9.8 8 3 ,  what is its period?  
    ::P=2(L9.8)12的公式1给出了长L米的钟摆秒的时段。如果钟摆的时段长度为9.883,其时段是多少?

    Solution:   Substitute 9.8 8 3 for L and solve.
    ::溶液:L和溶液的替代物9.883。

    P = 2 π ( L 9.8 ) 1 2 P = 2 π ( 9.8 8 3 9.8 ) 1 2 P = 2 π ( 9.8 8 3 9.8 3 3 ) 1 2 P = 2 π ( 9.8 5 3 ) 1 2 P = 2 π ( 9.8 ) 5 6

    ::P=2(L9.8)12P=2(9.8839.8)12P=2(9.88.39.8)12P=2(9.88.39.833)12P=2(9.853)12P=2(9.8)56

    Therefore , the period of the pendulum is P = 2 π ( 9.8 ) 5 6 .
    ::因此,工作周期为P=2(9.8)56。

    Feature: Rough Winds
    ::特点: 狂风

    by Denise Huey
    ::丹妮丝·胡伊(Denise Huey)

    Weather forecasts include a variety of information about the weather . A weather forecast on the local news usually includes the temperature, the wind speed , and the humidity in your area. At sea, the Beaufort Scale is usually used to determine how the rough winds are (given in miles per hour).
    ::天气预报包括关于天气的多种信息。 本地新闻上的天气预报通常包括温度、风速和湿度。 在海上,波福特天平通常用于确定风速(每小时以英里计 ) 。

    The Beaufort Scale is a formula used to determine the intensity of wind for hurricanes and tornadoes. A formula used to measure the intensity of wind on the Beaufort Scale at 10 meters above the sea surface is  v = 0.836 B ( 3 2 ) . "V" represents the wind speed at 10 meters above the sea surface, and "B" represents the Beaufort Scale number. If the news anchor were to mention a "Beaufort 9," should we run for shelter? Let's use this formula to find out.
    ::Beaufort 比例尺是一种公式,用来确定飓风和龙卷风的风强度。用来测量海面上10米处 Beaufort 比例尺上的风强度的公式是 v=0. 836B(32). “V”表示海面上10米处的风速,“B”表示Beaufort 比例尺号。如果新闻主播提到“Beaufort 9 ” ,我们是否应该运行以避风港?让我们使用这个公式来找出答案。

    After doing all the calculations, we find that v = 22.572 meters per second. A wind of this type might blow over trees and signs. Would you run for cover?
    ::经过所有的计算, 我们发现 v=22.572米每秒。 这种风可能会吹过树木和标志。 你会跑去寻找掩护吗 ?

    What if winds were 30 meters per second? Should we substitute 30 in for B or v ? Since we are given the wind speed, we should substitute this into the equation for " v ."
    ::如果风每秒30米怎么办?我们是否应该取代B或V中的30米?既然我们得到了风速,我们应该用这个公式来代替V。

    30 = 0.836 B ( 3 2 )

    ::30=0.836B(32)

    We 1st divide both sides by 0.836, then square both sides, and then take the cube root of both sides to solve for B .
    ::我们首先将双方除以0.836,然后将双方平方,然后用双方的立方根解决B问题。

    30 0.836 = B ( 3 2 ) 35.885 = B ( 3 2 ) ( 35.885 ) 2 = B 3 1287.733 = B 3 1287.733 ( 1 3 ) = B 10.879 = B

    ::300.836=B(32)35.885=B(32)(35.885)2=B31287.733=B31287.733(13)=B10.879=B

    The number 10 is pretty high on the Beaufort Scale, especially since the numbers range from 0 to 12! At Beaufort 10, you'd expect a really violent storm, with uprooted trees and shingles flying off roofs!
    ::特别是因为数字在0到12之间! 在Beaufort 10,你会期待一场非常激烈的暴风雨, 连根拔起的树木和闪电从屋顶上飞走!

    by Hailey Gilbney  explains the Beaufort Scale.
    ::Hailey Gilbney解释博福特比例尺。

     

     

    Summary
    ::摘要

    • The laws of exponents, particularly the product, quotient, and power rules, apply to rational exponents as well.
      ::推手的法律,特别是产品、商数和权力规则,也适用于理性推手。

    Review
    ::回顾

    Simplify each expression. Reduce all rational exponents and write your answer with positive exponents.
    ::简化每个表达式。 减少所有理性的提示, 并用积极的提示书写您的答复 。

    1. 1 5 a 4 5 25 3 2 a 3 5
    ::1. 15a452532a35

    2. 7 b 4 3 49 1 2 b 2 3
    ::2. 7b434912b-23

    3. m 8 9 m 2 3
    ::3.89m23

    4. x 4 7 y 11 6 x 1 14 y 5 3
    ::4. 47y116x114y53

    5. 8 5 3 r 5 s 3 4 t 1 3 2 4 r 21 5 s 2 t 7 9
    ::5. 853r5s34t1324r215s279

    6. ( a 3 2 b 4 5 ) 10 3
    ::6. (a32b45)103

    7. ( 5 x 5 7 y 4 ) 3 2
    ::7. (5x57y4)32

    8. ( 4 x 2 5 9 y 4 5 ) 5 2
    ::8. (4x259y45)52

    9. ( 75 d 18 5 3 d 3 5 ) 5 2
    :伤心9,75d1853d35)52

    10. ( 81 3 2 a 3 8 a 9 2 ) 1 3
    ::10. (8132a38a92)13

    11. 27 2 3 m 4 5 n 3 2 4 1 2 m 2 3 n 8 5
    ::11. 2723m45n-32412m-23n85

    12. ( 3 x 3 8 y 2 5 5 x 1 4 y 3 10 ) 2
    ::12. (3x38y255x14y-310)2

    Explore More
    ::探索更多

    1. Matt is making a tile decoration for his kitchen wall. Using square tiles of different sizes, Matt created one decoration that is five tiles across, with sides touching. The 1st tile is 15 in 2 , the 2nd tile is 20 in 2 , the 3rd is 35 in 2 , the 4th is 20 in 2 , and the 5th is 15 in 2 . What is the length of the decoration? (Round your answer to the nearest tenth.)
    ::1. 马特正在为厨房墙做瓷砖装饰。马特用不同大小的平方瓷砖制作了一个五张瓷砖,两侧相交。第一瓷砖是15英寸2,第二瓷砖是20英寸2,第三瓷砖是35英寸2,第四瓷砖是20英寸2,第五瓷砖是15英寸2。装饰的长度是多少? (您对最近的十分的答复是10英寸)。

    2. In your own words, explain how to rationalize the denominator of a fraction containing the sum or difference of square roots in the denominator. Why does this work? 
    ::2. 用你自己的话说,请解释如何使含有分母中平方根之和或差的分母的分母合理化。

    3. In your own words, explain why, in general, ( a + b ) 3 a 3 + b 3 .
    ::3. 用你自己的话说,请解释为什么一般而言(a+b)3a3+b3。

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.
    ::请参看附录。

    References
    ::参考参考资料

    1. "Pendulum," last edited May 30, 2017,
    ::1. 2017年5月30日 上一次编辑的“Pendulum”,