使用日志解决指数等同
章节大纲
-
Introduction
::导言A small town was established in 1950, and the population is given by
where is the number of years since 1950. The mayor would like to know when the population reached 20,000. In other words, a solution to the following equation is needed:
::1950年建立了一个小城镇,人口由P(t)=2,000(1.05)t给予,那里的人口是1950年以来的年数。市长想知道人口何时达到20,000。The difficulty is that the variable is in the exponent . We will explore algebraic techniques to handle that issue.
::20,000=2,000(1.05)t. 困难在于变量在指数中。 我们将探索代数技术来解决这个问题 。
Exponential Equation Solution Techniques
::指数赤道溶解技术To solve an exponential equation:
::要解析指数方程式 :-
Isolate the exponential part of the equation. If there are two exponential parts, then
rewrite so there is
a single exponent on each side of the equation.
::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。 -
Take the logarithm of each side of the equation.
::以方程每侧的对数取出方程的对数 。 -
Solve for the variable.
::解决变量。 -
Check your solution.
::检查你的解决方案。
A common technique for solving equations with variables in exponents is to take the log of both sides of the equation. The p roperties of logs can be used to simplify and solve the equation.
::用指数变量解析方程式的一个常见技术是采用方程式两侧的日志。日志的属性可用于简化和解析方程式。Properties of Using Logarithms
::使用对数属性Examples
::实例Example 1
::例1Th e amount of time it will take to have $9,000 in a savings account, paying 6% annual compound interest, if $300 is deposited at the end of each year, satisfies the equation
::如果每年年底交存300美元,则储蓄账户需要9 000美元,支付6%的年度复利(如果每年年底交存300美元,则需要多少时间才能满足等式要求)
::9,000=300(1.06)t-10.06。This type of investment is called an annuity . Solve the preceding equation for .
::这种类型的投资被称为年金。 t 解决前一个等式 。Solution:
::解决方案 :
::30=(1.06)t-1.006.8=(1.06t-12.8=1.06tln_2.8=ln(1.06t)=t ln(1.06t) (1.06t) =ln(2.06t) (2.8n) (1.06t) = (2.8n) (1.06) (1.06) (1.06) (17.67) 年Example 2
::例2Solve the following equation for : .
::解析 x 的下列方程式: 16x=25 。Solution:
::解决方案 :Take the log of both sides. U se log properties and a calculator to approximate the solution:
::使用两边的日志。 使用日志属性和计算器来接近解决方案 :
::16x=25log_16x=log_25xlog_16=log_25x=log_25x=log_25g_16x_16x_1.16Example 3
::例3Solve the following equation for all possible values of : .
::为 x 的所有可能值( log2x) 2- log2( x7) *12 ) 解决下列方程式 。Solution:
::解决方案 :Step 1: Identify that t his is a quadratic log problem, because the logarithmic term is squared in the 1st term. Use a substitution to examine each layer of the problem.
::步骤 1: 确定这是一个二次对数问题, 因为对数术语在第一个术语中方形。 使用替代来检查问题的每一层 。Step 2: Let .
::步骤2:让u=log2x。
:log2x)2--7log2x+12=0u2-7u+12=0(u-3)(u-4)=0u=3,4)
Step 3: Now, substitute back and solve for in each case.
::步骤3:现在,在每种情况下以 x 替换并解决。
::对数 2x=3x=23=8log2x=4x=24=16Example 4
::例4Return to the mayor's question from the Introduction. W hen will the small town reach a population of 20,000, as modeled by the equation ?
::回到市长在导言中提出的问题,小城镇何时才能达到以20,000=2,000(1.05)t等式为模型的20,000人口?
::20,000=2,000(1.05)t10=(1.05)tlog@10=(1.05)tlog@(10)=(1.05)tlog@1.05t=(10)g}(10) log}(1.05)t47.19年The population will reach 20,000 in 1997, because 1997 is 47 years after 1950.
::1997年人口将达到20,000人,因为1997年是在1950年以后47年。Example 5
::例5List all possible values of for the following equation :
::列出下列方程式的所有可能的 x 值 (x+1) x- 4- 1=0 。Solution:
::解决方案 :
:x+1) x-4- 1=0=0(x+1) x-4=1 添加 1.log(x+1) x-4=log*1 使用两侧的日志。(x- 4) log}(x+1) (x+1)=0 使用日志的属性。x- 4=0 或log (x+1)=0=0 或 100=x+1x-4=0 或 1- 1=xx=4,0 使用日志的属性。
Recall that you can only take the log of a positive argument. What if is negative 1 but raised to an even power?
::回顾您只能接受正参数的日志。 如果 x+1 是负 1, 但却被提升到一个偶数, 那么会怎样 ?Notice that when ,
so it is also a solution. However, is not possible.
::当 x2, (-2+1) -2 - 4 - 1=(-1) - 6 - 1=1 (-1) - 1=0, 也是一种解决办法。 但是, log *(-2+1) =log (-1) 是不可能的 。Note that you shouldn't fall into the habit of assuming you can take the log of both sides and get all the solutions . This is only true when the argument is strictly positive.
::请注意, 您不应该习惯于假设您可以使用 双方的日志并获得所有解决方案。 只有当争论是绝对肯定时, 才会出现这种情况 。Example 6
::例6Light intensity as it travels at specific depths of water in a swimming pool can be described by the relationship between for intensity, and for depth in feet. What is the intensity of light at 10 feet?
::光强度在游泳池中特定水深中行走时的光强度可以用i与d与d与脚的深度之间的关系来描述。 10英尺的光强度是多少?
:i12) 0.0145d
Solution:
::解决方案 :Given , solve for measured in lumens.
::根据 d=10, 解答我用月光测量的答案 。
:i12)0.0145(i12)0.014510log(i12)0.145(i12)=10-0.145i=1210-0.1458.594
Example 7
::例7Solve the following equation for all possible values of :
::为 x 的所有可能值解决下列方程式:
::- exe- x3=14Solution:
::解决方案 :First solve for :
::ex 的第一个解答 :
::-e-x3=14ex-e-x=42ex__(ex-e-x)=(42__ex-e-x)=(42―ex2x-1=42ex(ex)2-42ex-1=0)Let .
::让u=ex。
::u2-42u-1=0u(-42(-42-2)-(-42)-41(-1)-21=421768242.023796,-0.0237960Since the range of the exponential function is greater than 0, , then does not exist. Thus, is extraneous, so there is only one result.
::由于指数函数的范围大于 0, ex>0, 那么 ex 0.0 237960 不存在。 因此, 0.0 237960 是外部的, 所以只有一个结果 。
::-42.023796x 42.0237963.738Summary
::摘要-
To solve an exponential equation:
-
Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is a single exponent on each side of the equation.
::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。 -
Take the logarithm of each side of the equation.
::以方程每侧的对数取出方程的对数 。 -
Solve for the variable.
::解决变量。 -
Check your solution.
::检查你的解决方案。
::要解析指数方程式 : 分离方程式的指数部分 。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号。 选择方程式每一侧的对数 。 解决变量 。 请检查您的解答 。 -
Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is a single exponent on each side of the equation.
Review
::回顾Solve each equation for . If necessary, round each answer to three decimal places.
::x 的每个方程式都解答。如果需要,将每个方程式的回答按小数点后三位数进行。1.
::1. 4x=62.
::2. 5x=23.
::3. 124x=1,0204.
::4. 73x=2 4005.
::5. 2x+1-5=226.
::6. 5x+12x=5x+77.
::7. 2x+1=22x+38.
::8. 3x+3=9x+19.
::9. 2x+4=5x10.
::10.80.2x=54611.
::11. bx=c+a12.
::12. 32x=0.94-12Solve each log equation by using log properties and rewriting as an exponential equation:
::使用日志属性并重写成指数方程式来解决每个日志方程式:13.
::13.3x+log3=2 对数 3x+log3=5=214.
::14. 2log_x=log_8+log_5_log_1015.
::15. log9x=32Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Isolate the exponential part of the equation. If there are two exponential parts, then
rewrite so there is
a single exponent on each side of the equation.