章节大纲

  • Introduction
    ::导言

    Sound waves and tones can be modeled by tuning forks. One sound might be modeled by the equation  s = 3 sin 2 π t ,  and another might be modeled by  s = 4 sin ( t + 3 ) .  It may be difficult to compare the tones without graphing. While trigonometric functions do not follow the properties of integers, they have identities that can be used to manipulate their variables.
    ::声波和音调调色调可以通过调制叉进行模拟。 一种声音可以用方程式 s=3sin2t 进行模拟,另一种声音可能用 s=4sin( t+3) 进行模拟, 不绘制图形就很难比较音调。 虽然三角度函数不跟随整数的属性, 它们具有可用于操纵变量的身份 。

    In mathematics, the difference between exact and approximate values is always an issue. At this point with trigonometry, the only trigonometric functions known exactly are summarized in the unit circle . However, knowledge of these functions provides enough information to  find the of 15  (the difference of 45  and 30 )  and 75  ( the sum of 45  and 30 ) .
    ::在数学方面,精确值和近似值之间的差别总是个问题。在三角测量学方面,唯一确切知道的三角函数在单位圆中被总结。然而,对这些函数的了解提供了足够的信息,可以找到15个(45个和30个)和75个(45个和30个)和75个(45个和30个)。

    Using the unit circle and a new set of identities, determine sin 15  and sin 75 .
    ::使用单位圆和一套新的身份,确定sin15和sin75。

    lesson content

    Sum and Difference Identities
    ::合计和差异

    There are some intuitive but incorrect formulas for sums and differences with respect to trigonometric functions. For example, sin ( θ + β ) sin θ + sin β   is one of the most common incorrect guesses as to the sum and difference identity .
    ::对于三角函数的数值和差异,有一些直观但不正确的公式。例如,sin 是对于总和和和差异特性最常见的不正确的猜测之一。

    First, look at the derivation of the cosine difference identity:
    ::首先,看看余弦差异特性的衍生:

    cos ( α β ) = cos α cos β + sin α sin β

    :伤心)=coscossinsinsin

     

    lesson content

    Start by drawing two arbitrary angles,  α  and β . In the image above,  α  is the angle in red and β  is the angle in blue. The difference α β  is noted in black as θ . The reason why there are two pictures is because the image on the right has the same angle θ  in a rotated position. This will be useful to work with because the length of A B ¯  will be the same as the length of C D ¯ .
    ::以绘制两个任意角度( α 和 ) 开始。 在以上图像中, α 是红色角度, β 是蓝色角度。 以黑色表示 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    T he length of  A B ¯  by using the distance formula:
    ::使用距离公式的 AB 长度 :

    A B ¯ = ( cos α cos β ) 2 + ( sin α sin β ) 2

    ::AB (coscos)2+(sinsin)2

    The length of  C D ¯  by using the distance formula:
    ::使用距离公式的 CD 长度 :

    C D ¯ = ( cos θ 1 ) 2 + ( sin θ 0 ) 2
     
    ::CD {( cos% 1) 2+( sin0) 2

    Since  A B ¯ = C D ¯
    ::自从AB'C'D',

    ( cos α cos β ) 2 + ( sin α sin β ) 2 = ( cos θ 1 ) 2 + ( sin θ 0 ) 2 ( cos α cos β ) 2 + ( sin α sin β ) 2 = ( cos θ 1 ) 2 + ( sin θ 0 ) 2 .

    :伤心coscos)2+(sinsin)2=(cos1)2+(sin0)(2(coscos)2+(sinsin)2=(cos1)2+(sin0))。

    Multiply through the squared terms and simplify, using algebra. 
    ::乘以平方条件,使用代数简化。

    ( cos α ) 2 2 cos α cos β + ( cos β ) 2 + ( sin α ) 2 2 sin α sin β + ( sin β ) 2 = ( cos θ ) 2 2 cos θ + 1 + ( sin θ ) 2

    :伤心cos)2-2-2cos(cos)2+(sin)2-2sin(sin)2=(cos)2-2-2cos1+(sin)2

    Use the Pythagorean Trigonometric Identity to further simplify. 
    ::使用毕达哥里安三角特征来进一步简化。

    2 2 cos α cos β 2 sin α sin β = ( cos θ ) 2 2 cos θ + 1 + ( sin θ ) 2 2 2 cos α cos β 2 sin α sin β = 1 2 cos θ + 1 2 cos α cos β 2 sin α sin β = 2 cos θ cos α cos β + sin α sin β = cos θ = cos ( α β )

    ::2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

    The proof for the sine and tangent  functions are  left as an example and in the exercises. Cotangent , secant, and cosecant are excluded because it is better to use .  
    ::用于正切和相切函数的证明留作例子和练习。 切除、 割裂和 割裂, 因为使用更好 。 @ info: whatsthis

        Difference Identities
    ::相 异 异 度

    cos ( α β ) = cos α cos β + sin α sin β

    :伤心)=coscossinsinsin

    sin ( α β ) = sin α cos β cos α sin β

    :伤心)=sincoscoscossinsin

    tan ( α β ) = sin ( α β ) cos ( α β ) = tan α tan β 1 + tan α tan β

    ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    The sum identities are nearly the same as the difference identities. However, notice the change in signs in the sum identities. 
    ::总和身份与差异身份几乎相同,但请注意总和身份的标志变化。

       Sum Identities
    ::身份证明

    cos ( α + β ) = cos α cos β sin α sin β

    :伤心)=coscossinsinsin

    sin ( α + β ) = sin α cos β + cos α sin β

    :伤心)=sincoscoscossinsin

     

    tan ( α + β ) = sin ( α + β ) cos ( α + β ) = tan α + tan β 1 tan α tan β

    ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Examples using the for sine and tangent functions can be seen in the following videos: 
    ::使用正弦和相切函数的例子可见于以下视频:

     

      

     

      

    Examples
    ::实例

    Example 1
    ::例1

    Prove the sum identity for the cosine function
    ::证明余弦函数的总和身份。

    cos α cos β sin α sin β = cos ( α + β )

    :伤心 )

    Solution:
    ::解决方案 :

    Step 1: Start with the cosine of a difference and make a substitution. Then use the odd-even identity.
    ::第1步:从差异的余弦开始进行替换。然后使用奇数身份 。

    cos α cos β + sin α sin β = cos ( α β )

    :伤心 )

    Step 2: Let γ = β
    ::第2步:让我们____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    cos α cos ( γ ) + sin α sin ( γ ) = cos ( α + γ ) cos α cos γ sin α sin γ = cos ( α + γ )

    ::

    Example 2
    ::例2

    Find the exact value of tan 15  without using a calculator.
    ::在不使用计算器的情况下查找 tan% 15 的准确值 。

    Solution:
    ::解决方案 :

    Step1: 
    ::步骤1:

    tan 15 = tan ( 45 30 ) = tan 45 tan 30 1 + tan 45 tan 30 = 1 3 3 1 + 1 3 3 = 3 3 3 + 3


    ::~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Step 2: A final solution is rationalized . In this case, multiplying through by the conjugate of the denominator will eliminate the radical.  
    ::步骤2:最终解决方案的合理化。 在这种情况下,乘以分母的组合,将消除激进主义。

    = ( 3 3 ) ( 3 3 ) ( 3 + 3 ) ( 3 3 ) = 9 6 3 + 3 9 3 = 12 6 3 6 = 2 3

    Example 3
    ::例3

    Evaluate the expression exactly without using a calculator.
    ::准确评价表达式而不使用计算器 。

    cos 50 cos 5 + sin 50 sin 5

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么?

    Solution:
    ::解决方案 :

    Apply c osine of a difference.
    ::应用差异的余弦 。

    cos 50 cos 5 + sin 50 sin 5 = cos ( 50 5 ) = cos 45 = 2 2

    ::====================================================================================================================================== ================================================================================================================================

    Example 4
    ::例4

    Return to the problem in the Introduction, u sing the unit circle and a new set of identities to determine   sin 15  and   sin 75 .
    ::回到导言中的问题,利用单位圈和一套新的身份来确定sin15和sin75。

    Solution:
    ::解决方案 :

    In order to evaluate sin 15  and sin 75  exactly without a calculator, use the sine of a difference and the sine of a sum.

    sin ( 45 30 ) = sin 45 cos 30 cos 45 sin 30 = 2 2 3 2 2 2 1 2 = 6 2 4 sin ( 45 + 30 ) = sin 45 cos 30 + cos 45 sin 30 = 2 2 3 2 + 2 2 1 2 = 6 + 2 4

    ::为了评估 sin\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 5
    ::例5

    Prove the sine of a difference identity. 
    ::证明差异认同的必要条件。

    sin ( α β ) = sin α cos β cos α sin β

    :伤心)=sincoscoscossinsin

    Solution:  
    ::解决方案 :

    Start with the cofunction identity , and then distribute and work out the cosine of a sum and cofunction identities.
    ::以共用身份开始, 然后分配和解决余弦 和共用身份。

    sin ( α β ) = cos ( π 2 ( α β ) ) = cos ( ( π 2 α ) + β ) = cos ( π 2 α ) cos β sin ( π 2 α ) sin β = sin α cos β cos α sin β

    :伤心) =cos() =cos() () () () () () () () () () () () () () () () () () () () () () () () () () () () () ) () () () () () () () () () () () () () () () () () ) (() () () (() () () () () (() ) ) () (() ) (() ) () ((() ) ) (() () ) ) ) () () ) ) ((() ) )

    Example 6
    ::例6

    Use a sum or difference identity to find an exact value of cot ( 5 π 12 ) .
    ::使用一个总和或差异身份来查找 cot( 512) 的准确值 。

    Solution
    ::解决方案 :

    Start with the definition of cotangent as the inverse of tangent. 
    ::以正切值定义为反正切值开始 。

    cot ( 5 π 12 ) = 1 tan ( 5 π 12 ) = 1 tan ( 9 π 12 4 π 12 ) = 1 tan ( 3 π 4 π 3 ) = 1 + tan 3 π 4 tan π 3 tan 3 π 4 tan π 3 = 1 + ( 1 ) 3 ( 1 ) 3 = 1 3 1 3 1 + 3 1 + 3 = 1 + 2 3 3 1 3 = 4 + 2 3 2 = 2 3

    :伤心5)12=1tan(512)=1tan(912-412)=1tan(343) =1+tan(344333334 - tan3=1+(11)3=1+(13)3=1-1-1-3-1-3__1+3-1+3+31+23-31-3__4+23-2=2-3)

    Example 7
    ::例7

    Prove the following identity:  sin ( x y ) sin ( x + y ) = tan x tan y tan x + tan y .
    ::证明以下身份:sin(x-y)sin(x+y)=tanx-tanytanx+tany。

    Solution:    
    ::解决方案 :

    sin ( x y ) sin ( x + y ) = sin x cos y cos x sin y sin x cos y + cos x sin y = sin x cos y cos x sin y sin x cos y + cos x sin y ( 1 cos x cos y ) ( 1 cos x cos y ) = ( sin x   cos y cos x cos y ) ( cos x   sin y cos x cos y ) ( sin x   cos y cos x cos y ) + ( cos x   sin y cos x cos y ) = tan x tan y tan x + tan y

    :伤心x+Y) = (sin) xxxxxxxxxxxxxxxxxxxxxxxxxin}}}{Y}}(x+Y) = (sinxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}}}) = (cusxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxn_}}}{}}}

    Summary
    ::摘要

    • Difference Identities
      ::相 异 异 度

    cos ( α β ) = cos α cos β + sin α sin β sin ( α β ) = sin α cos β cos α sin β tan ( α β ) = sin ( α β ) cos ( α β ) = tan α tan β 1 + tan α tan β

    ::

    • Sum Identities 
      ::身份证明

    cos ( α + β ) = cos α cos β sin α sin β sin ( α + β ) = sin α cos β + cos α sin β tan ( α + β ) = sin ( α + β ) cos ( α + β ) = tan α + tan β 1 tan α tan β

    :伤心) () () () () () () () () () () () () () () () () () 1-() () () () () () () () ()

    Review 
    ::回顾

    Find the exact value for each expression by using a sum or difference identity:
    ::使用总和或差异特性查找每个表达式的准确值 :

    1. cos 75
    ::1. 承担第75-75-______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    2.  cos 105
    ::2. COS105_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    3.  cos 165
    ::3,cos165

    4.  sin 105
    ::4 sin 105______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    5.  sec 105
    ::5 秒 105

    6.  tan 75
    ::6. 锡 75_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    7. Prove the sine of a sum identity.
    ::7. 证明真实身份的必要条件。

    8. Prove the tangent of a sum identity.
    ::8. 证明一个总特征的相切性。

    9. Prove the tangent of a difference identity.
    ::9. 证明差异认同的相切性。

    10. Evaluate without a calculator: cos 50 cos 10 sin 50 sin 10 .
    ::10. 无计算器的评价:cos50cos10sin50sin10。

    11. Evaluate without a calculator: sin 35 cos 5 cos 35 sin 5 .
    ::11. 评估没有计算器:sin_35cos_5cos_35sin_55。

    12. Evaluate without a calculator: sin 55 cos 5 + cos 55 sin 5 .
    ::12. 评估没有计算法:sin55cos55cos55sin555。

    13. If cos α cos β = sin α sin β , then what does cos ( α + β )  equal?
    ::13. 如果cosççosísinsin,那么cos()等于什么?

    14. Prove that tan ( x + π 4 ) = 1 + tan x 1 tan x .
    ::14. 证明Tan(x4)=1+tanx1-tanx。

    15. Prove that sin ( x + π ) = sin x .
    ::15. 证明这一罪行。

     

    Review (Answers)
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。