章节大纲

  • Section 4.2: Graphing and Evaluating Exponential Functions
    ::第4.2节:绘制图表和评估指数职能

    1. y = 5 5 x    
      ::y=5=5=5x
    2. y = 2 4 x  
      ::y=2×4x y=2×4x
    3. y = 16 3 x  
      ::y=16=3x



    4. y = 2 x  
      ::y=2x y=2x
    5. y = 2 - x  
      ::y=2x y=2x
    6. y = - 2 x  
      ::y=-2x y=-2x
    7. f ( x ) = 3 x 4  will be moved to the right 4 spaces.
      ::f(x) = 3x-4 将移到右边的 4 空格 。


      ::f(x) = 3x-4 将移到右边的 4 空格 。
    8. f ( x ) = - 4 x  will be reflected across the x  axis.
      ::f(x) =-4x 将反射到 x 轴。


      ::f(x) =-4x 将反射到 x 轴。
    9. f ( x ) = 3 x 2  will be moved down 2 spaces.
      ::f(x)=3x-2 将会向下移动两个空格 。


      ::f(x)=3x-2 将会向下移动两个空格 。
    10. f ( x ) = - 5 x + 2  will move left 2 spaces, and be reflected over the  x  axis.
      ::f(x) =-5x+2 将左移两个空格,并反映在 x 轴上方。


      ::f(x) =-5x+2 将左移两个空格,并反映在 x 轴上方。
    11. f ( x ) = 5 x 4 3  will be moved down 3 spaces and right 4 spaces.
      ::f(x) = 5x-4-3 将会向下移动 3 个空格和右 4 个空格 。


      ::f(x) = 5x-4-3 将会向下移动 3 个空格和右 4 个空格 。
    12. Because the y -intercept occurs where x = 0  and y = a b 0  → y = a 1  → y = a
      ::因为y- interview 发生于 x=0 和 y=a&b0 y=a1 y=a。


      ::因为y- interview 发生于 x=0 和 y=a&b0 y=a1 y=a。
    13. 10,485,760 rabbits
      ::10 485 760只兔子
    14. Approximately 1.138 grams
      ::约1 138克

    Section 4.3: Graphing and Evaluating Logarithmic Functions 
    ::第4.3节:绘图和评估对数函数











    1. You could graph it as  log ( x ) log ( 4 ) .
       
      ::您可以用对数(x)log(4)来图示它。

    2. Yes
      ::是 是
    3. No
      ::否 无
    4. No
      ::否 无

     

    4.4 Properties of Logs
    ::4.4 日志属性

    1. False
      ::假假
    2. False
      ::假假
    3. True
      ::真实
    4. log ( 8 x 2 + 16 x )  
      ::log ( 8x2+16x)
    5. log x 6  
      ::对数============================================================================================
    6. log 2 ( 3 x 4 y )  
      ::log2( 3x4y)
    7. log 3 z 4  
      ::对数 3z4
    8. log 4 2 + 3 log 4 x log 4 5  
      ::对数 4 @% 2+3log4_x-log4_% 5
    9. ln 4 + ln x + 2 ln y ln 15  
      ::In4+lnx+2lny-ln15
    10. 2 log x + 3 log y + 3 log z log 3  
      ::2log_x+3log_y+3log_z_log%3
    11. log 2 10 = x + 1  
      ::对数 2\\\\\\ 10=x+1
    12. 2 12 = x 1  
      ::212=x-1
    13. Let  y = log b n x . Then ( b n ) y = x  and  b n y = x . Take the log base b of both sides, and you have ( n y ) log b b = log b x . Simplify to get  n y = log b x . Solve for y ,  and you have y = 1 n log b x . Since both  1 n log b x  and  log b n x  are equal to y , they are equal to each other.
      ::Let y=logbnx. 然后 (bn)y=x 和 bny=x. 使用两边的对数基准 b, 您有( ny) logbb=logbx. 简化以获得 ny=logbx. solve y, 您有 y=1nlogbx. 由于 1nlogbx 和 logbnx 都等于 y, 它们彼此相等 。
    14. From the previous problem, you know that log b n ( x n ) = 1 n log b x n .  Use the exponentiation property, and you have 1 n log b x n = n ( 1 n ) log b x ,  which simplifies to  log b x .
      ::从上一个问题中, 您知道对数 {( xn) =1nlogb}}xn。 使用引号属性, 您有 1nlogb}xn =n(1n) logb}x, 它简化为对数 {x 。
    15. y = log 1 b 1 x .  Let  y = log 1 b 1 x . Then ( 1 b ) y = 1 x . You can rewrite this equation as x = b y .  You can then rewrite in logarithmic form as log b x = y . Since both log b x  and  log 1 b 1 x  are equal to  y , they are equal to each other.     
      ::y=log1b1x. 让我们y=log1b1x. 然后 (1b)y=1x. 您可以重写此方程式为 x=by。 然后您可以重写对数格式为logbx=y。 由于logbx和log1b1x都等于y, 它们彼此等同 。

     

    Section 4.5: Solving Exponential Equations Using Logs
    ::第4.5节:使用日志解决指数等同

    1.   x = 1.292
      ::x=1.292x=1.292
    2.   x = 0.431
      ::x=0.431xx=0.431
    3.   x = 0.697
      ::x=0.697xx=0.697
    4.   x = 1.333
      ::x=1.333x=1.333
    5.   x = 3.754
      ::x=3.754x=3.754
    6.   x = 0.783
      ::x=0.783x=0.783
    7.   x = - 2
      ::x=-2x=2
    8.   x = 1
      ::x=1 x=1
    9.   x = 3.0259
      ::x=3.0259
    10.   x = 8.9872
      ::x8.9872x8.9872
    11.   x = log ( c + a ) log b
      ::x=log(c+a)logb
    12.   x = - 0.057
      ::x=- 0.057
    13.   x = 1.8
      ::x=1.8x=1.8
    14.   x = 2
      ::x=2x=2
    15.   x = 27
      ::x=27x=27

     

    Section 4.6: Solving Logarithmic Equations
    ::第4.6节:解决对数等数

    1.   x = 32 , 768
      ::x=32,768x=32,768
    2.   x 498.831
      ::x498.831
    3.   x = 86
      ::x=86x=86
    4.   x = 170
      ::x=170 x=170
    5.   x 1.132
      ::x1132
    6.   x = 3 3 1.442
      ::x=33=1.442
    7.   x = 2
      ::x=2x=2
    8.   x = 1
      ::x=1 x=1
    9.   x = 8
      ::x=8x=8
    10.   x = 27
      ::x=27x=27
    11.   x = 2
      ::x=2x=2
    12.   x 3.272
      ::x*3.272
    13.   x = 4 3
      ::x=43 x=43
    14.   x = 2 + 2 11 8.633
      ::x=2+211=8.633
    15.   x = 6
      ::x=6x=6

     

    Section 4.7: Compound Interest
    ::第4.7节:复合利息

    1. The compound interest formula is A ( t ) = p ( 1 + r ) t .
      ::复合利息公式为 A(t)=p(1+r)t。
    2. They would have earned $373.82.
      ::他们本可以挣373.82美元。
    3. Kyle's balance would be $1,098.81.
      ::Kyle的余额将是1 098.81美元。
    4. Yearly simple interest is effectively the same as compound interest compounding yearly. Roberta would have $18,022.10 in the account.
      ::一年简单利息实际上与每年复利复利相同,罗伯塔账户中有18 022.10美元。
    5. The bank has been paying approximately 3.5% annually.
      ::银行每年支付约3.5%。
    6. She could expect to have $3,122.
      ::她可以指望有3 122美元。
    7. There is a balance of $885.08.
      ::余额为885.08美元。
    8. Her original deposit was $650.
      ::她原先的存款是650美元
    9. 1000 ( 1 + .05 ) 7  
    10.   f ( x ) = 3000 ( 1.14 x )  
      $7,500
      :伤心xx) = 30000(1.14x) 7 500美元
    11. He will owe a total of $318.27.
      ::他将共欠318.27美元。
    12. $600
    13. $715.56
    14. $15,300.14
    15. $13,138.75

     

    Section 4.8: Population Growth Models and Logistic Functions
    ::第4.8节:人口增长模式和后勤职能

    1.   f ( x ) = 12 1 + 1.4 0.51 x
      ::f(x) = 121+1.40. 51x
    2.   f ( x ) = 200 1 + 1 3 0.8027 x  
      ::f(x) = 2001+130. 8027x
    3.   f ( x ) = 1 , 500 1 + 9 0.749 x  
      ::f(x)=1,51+90.749x
    4.   f ( x ) = 1 , 000 , 000 1 + 9 0.959 x  
      ::f(x) = 1 000 0001+90. 959x
    5.   f ( x ) = 30 , 000 , 000 1 + 2.75 0.89 x  
      ::f(x)=30 000 0001+2.750.89x
    6. 32
    7. 8

    8. 25
    9. 5

    10. 4
    11. 4 3  

    12. Any function in the form   f ( x ) = c 1 + a b x ,  where 0 < b < 1 .   
      ::窗体 f(x) = c1+ab-x 中的任何函数,其中 0<b> 1。