章节大纲

  • We know how to take the inverse of a 2x2 matrix, but let's move on and see how cofactors and determinants play in taking inverses of higher dimensional matrices.
    ::我们知道如何逆向 2x2 矩阵, 但让我们继续看 共生因素和决定因素如何在 反向 高维矩阵中起作用。


     

    We know what the cofactors are from each of our last few lessons. So, let's define what the cofactor matrix is.
    ::我们知道我们最后几堂课的共生因素是什么。让我们来定义一下共生因素矩阵是什么。

    Given an  n × n  matrix A, the cofactor matrix of A, denoted by C, can be written as the matrix where each entry is equivalent to the cofactor in matrix A. 
    ::鉴于 nxn 矩阵A,C 表示的A的共构物矩阵可以写成矩阵,其中每个条目相当于矩阵A中的共构物。

    Let's try and visualize this with an example.
    ::让我们用一个例子来想象一下。

    A = [ 1 1 2 3 4 2 0 5 3 ] c 11 = det ( [ 4 2 5 3 ] ) , c 12 = det ( [ 3 2 0 3 ] ) , c 13 = det ( [ 3 4 0 5 ] ) c 21 = det ( [ 1 2 5 3 ] ) , c 22 = det ( [ 1 2 0 3 ] ) , c 23 = det ( [ 1 1 0 5 ] ) c 31 = det ( [ 1 2 4 2 ] ) , c 32 = det ( [ 1 2 3 2 ] ) , c 33 = det ( [ 1 1 3 4 ] ) C = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] C = [ | 4 2 5 3 | | 3 2 0 3 | | 3 4 0 5 | | 1 2 5 3 | | 1 2 0 3 | | 1 1 0 5 | | 1 2 4 2 | | 1 2 3 2 | | 1 1 3 4 | ] C = [ 2 9 15 7 3 5 6 8 7 ]  
    ::A=[1-1234-205-33],c11=det([4-25-3],c12det([3-20-3]),c13=det([3405])c21det([125-3]),c22=det([120-3]),c23det([1-105])c31=det([-124-2],c32det([123-2]),c33=det([1-134])C=[c11c12c13c21c22c-23c31c3233] C=[425-32______________________________________________________________________________________________(120_____)c23_______________________________________________________________________________________([291-1573-3_________687]

    And  using this matrix, if we take it's transpose and divide by the determinant of A, we get the inverse of A. So let's check that
    ::使用这个矩阵,如果我们把它 转换和除以A的决定因素, 我们得到A的反反。让我们检查一下

    C = [ 2 9 15 7 3 5 6 8 7 ] C T = [ 2 7 6 9 3 8 15 5 7 ] det ( A ) = 2 ( 1 ) 1 ( 9 ) + 2 ( 15 ) det ( A ) = 19 A 1 = 1 19 [ 2 7 6 9 3 8 15 5 7 ] A 1 = [ 2 19 7 19 6 19 9 19 3 19 8 19 15 19 5 19 7 19 ]  
    ::C=[29157-3-3-3-5-5-687]C=[-27-69-3815-57]det(A) 2(1)-1(9)+2(15)=19A-1=119[-27-38-15-57]A-1=219719-619919-31981919-19-19-519719]


    Another name for the cofactor matrix transposed is the adjugate or adjunct matrix. 
    ::移植的共构矩阵的另一个名称是辅助矩阵或辅助矩阵。

    So,  A 1 = 1 det ( A ) adj ( A )

    ::所以,A-1=1det(A)adj(A)

    Similarly, from this we can also gather the property that  ( adj ( A ) ) A = det ( A ) I  where again, I is the identity matrix.
    ::同样,我们也可以从中收集(adj(A))_A=det(A)_I的财产,而I是身份矩阵。

    So we can prove this by seeing that
    ::因此,我们可以通过看到这一点来证明这一点:

    A 1 = 1 det ( A ) adj ( A ) A A 1 = A 1 det ( A ) adj ( A ) I = A 1 det ( A ) adj ( A ) det ( A ) = A adj ( A ) A ( adj ( A ) ) = det ( A ) I  
    ::A-1=1det(A)adj(A)AQA-1=AQ1det(A)AA(A)I=AQIdet(A)Aadj(A)det(A)A(A)adj(A)A(A)A(A)=det(A)I

    Now, let's verify this with an example
    ::现在,我们举个例子来验证一下

    A = [ 1 2 1 0 4 0 3 2 1 ] det ( A ) = 16 C = [ 4 0 12 0 4 0 4 0 4 ] C T = [ 4 0 4 0 4 0 12 0 4 ] adj ( A ) = [ 4 0 4 0 4 0 12 0 4 ] A ( adj ( A ) ) = [ 1 2 1 0 4 0 3 2 1 ] [ 4 0 4 0 4 0 12 0 4 ] [ 16 0 0 0 16 0 0 0 16 ] = 16 I  
    ::A=[12-104003-21]det(A)=16C=[40-12040404]CT=[404040-12004]adj(A)=[404040-12004]A(adj(A))=[12-104003-21]__[404040-1204][16006006]=16I


    Now, let's look at products of inverses
    ::现在,让我们看看逆向的产品

    Let   C = A B  where A and B are square matrices both with dimension n × n  .
    ::在 A 和 B 是 方格 的 C= AB 中, 以 维度 nxn 表示 。

    Hence
    ::因此

    C = A B A 1 C = A 1 A B A 1 C = B B = A 1 C C B 1 = A B B 1 A = C B 1 C = A B C = ( C B 1 ) ( A 1 C ) C = C B 1 A 1 C C C 1 = C B 1 A 1 C C 1 I = C B 1 A 1 C 1 = C 1 C B 1 A 1 C 1 = I B 1 A 1 C 1 = B 1 A 1  
    ::C=ABA-1C=A-1A-1ABA-1C=A-1ABB=A-1CB-1C=A-1CB-1A=ABB-1C-1A=ABB-1A=ABB-1C=CB-1C=(CB-1)(A-1C)C=CB-1A-1A-1CCC-1C-1C=CB-1A-1A-1C-1C-1C-1C=CB-1A-1C-1C-1C-1C-1C-1C-1C-1C-1C-1=CB-1A-1A-1A-1A-1C-1B-1B-1C-1=B-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1=CB-1A-1A-1A-1A-1C-1A-1A-1C-1C-1C-1C-1C-1C-1C-1=B-1B-1C-1B-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1=C-1C-1C-1C-1C-1C-1C-1=C-1=C-1=C-1=C-1C-1C-1C-1C-1C-1C-1=C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1=C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1=C-1C-1C-1=C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1(C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C-1C

    We'll go into some matrix inversion techniques later in this book, but we can introduce a few other matrix inversion techniques now.
    ::我们可以在这本书的后期 采用一些矩阵反向技术 但我们现在可以引进 其他一些矩阵反向技术

    Another way to find the inverse of a matrix is to use Gauss Jordan elimination
    ::另一种发现矩阵反反比的方法是使用约旦消除高斯的方法。

    In order to solve this, we write
    ::为了解决这个问题,我们写

    [ A | I ]  and then row reduce to make it into the form  [ I | A 1 ]  
    ::[AI],然后排行缩小,以形成表格[IA-1]

    and then this is true, because if you look at how we solve the system  A x = b  and write the system  [ A | b ]  and then get  [ I | A 1 b ]  
    ::然后,这是真的, 因为如果你看看我们如何解决系统 Axb 和写系统[Ab] 然后得到[IA-1b]

    So we can see that solving for A inverse is solving the equation  A B = I  and trying to find the matrix  B .
    ::因此,我们可以看到,解决反向的方法就是解决AB=I的方程式, 并试图找到矩阵B。


    Let's look at an example of this:
    ::举个例子:

    A = [ 1 2 3 5 ] [ A | I ] = [ 1 2 | 1 0 3 5 | 0 1 ] = [ 1 2 | 1 0 0 1 | 3 1 ] = [ 1 0 | 5 2 0 1 | 3 1 ] = [ 1 0 | 5 2 0 1 | 3 1 ]  
    ::A=[1-2-2-35][AI]=[1-2][10-3501]=[1-2____________________________________________________________________________[10_____________________________________________________________________________________________[10________________________________________________[1________________________________________________________[10____________________________________[10____________________________________[10________________________________________________________________________________________________________________[[[[[10______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[[[[[[[[[[[[[[[[________________________________________________________________________________________________

    And  A 1 = [ 5 2 3 1 ]  
    ::A-1=[-5-2-3-1]

    To verify that this is true we see that 
    ::为了核实事实真相,我们看到:

    [ 1 2 3 5 ] [ 5 2 3 1 ] = [ 1 0 0 1 ] = I  
    ::[1-2-35]-[-5-2-3-3-1]=[1001]=一