章节大纲

  • Let's introduce a new vector space that we haven't really studied before, the polynomial space.
    ::让我们介绍一个新的矢量空间, 我们以前没有真正研究过, 多元空间。

     


     

    We say that  P n ( x ) = { a n x n + + a 0 | a 0 , , a n R }
    ::我们说,Pn(x) anxna0a0a00,,anR}

     

    So, let's take a function from
    ::所以,让我们从

      f : P 2 R 3 f ( a x 2 + b x + c ) = [ a b c ]
    ::f:P2-R3f( 轴2+bx+c) = [ abc]

    Here's a property of this function:
    ::以下是此函数的属性 :

    The function  f  is one-to-one, so if  f ( p 1 ( x ) ) = f ( p 2 ( x ) )  then  p 1 ( x ) = p 2 ( x )
    ::函数 f 是一对一, 所以如果 f( p1 (x)) = f( p2(x) , 那么 p1 (x) = p2(x)

    To prove this we see that if  p 1 ( x ) = a 1 x 2 + b 1 x + c 1 & p 2 ( x ) = a 2 x 2 + b 2 x + c 2
    ::要证明这一点, 我们可以看到, 如果 p1( x) =a1x2+b1x+c1&p2( x) =a2x2+b2x+c2, 则 p1( x) =a2x2+b2x+c2

    if  f ( p 1 ( x ) ) = [ a 1 b 1 c 1 ] f ( p 2 ( x ) ) = [ a 2 b 2 c 2 ] [ a 1 b 1 c 1 ] = [ a 2 b 2 c 2 ] a 1 = a 2 , b 1 = b 2 , c 1 = c 2 p 1 ( x ) = a 1 x 2 + b 1 x + c 1 = a 2 x 2 + b 2 x + c 2 = p 2 ( x )
    ::如果 f( p1 (x)) = [a1b1c1f( p2(x) ) = [a2b2c2][a1b1c1] =[a2b2c22] =[a2b2c2] a1=a2,b1=b2,c1=c2p1 (x) =a1x2+b1x+c1=a2x2+b2x+c2=p2(x)

    Similarly, it is true that for every triplet  [ a b c ] R 3 p ( x ) P 2 ( x ) s.t. f ( p ( x ) ) = [ a b c ]
    ::同样,对于每个三胞胎来说,的确都是[abc]R3p(x)P2(x)P2(x)s.t.f(p(x))=[abc]。

    This property is called being onto.
    ::此属性被命名为“ 正在连接 ” 。


     

    The function f is both one-to-one and onto and we say that that means that it is a bijection or an isomorphism and that both the domain and codomain are isomorphic.
    ::函数 f 既一对一,又一对一,我们说,这意味着它是一个双向或无形态,域和共域都是无形态的。


     

    Another example of an isomorphism is the change of coordinates transformation.
    ::地貌变异的另一个例子是坐标变异的变化。

    Let's say we have a vector space  V = R 3  and we have the standard basis vectors,  { [ 1 0 0 ] , [ 0 1 0 ] , [ 0 0 1 ] }  and then we have another basis  B = { [ 2 0 1 ] , [ 4 2 1 ] , [ 1 0 2 ] }
    ::假设我们有一个矢量空间V=R3,我们有标准基矢量,{[100],[010],[001],[001],然后我们有另一个基点B[20-1],[4-21],[10-2]

    The function or mapping
    ::函数或绘图

    x [ x ] B  is an isomorphism
    ::x[x]B是一个无形态

    Let's look at what this mapping does:
    ::让我们看看这幅地图会做什么:

    Let's for example take the vector in the standard basis to equal 
    ::例如,让我们在标准基中以矢量为等

    x = [ 1 2 3 ] x = 1 [ 1 0 0 ] + 2 [ 0 1 0 ] 3 [ 0 0 1 ] x = 1 e 1 + 2 e 2 3 e 3 [ x ] B = [ 1 e 1 + 2 e 2 3 e 3 ] B [ x ] B = 1 [ e 1 ] B + 2 [ e 2 ] B 3 [ e 3 ] B [ e 1 ] B = [ 2 3 0 1 3 ] [ e 2 ] B = [ 3 2 1 2 1 ] [ e 3 ] B = [ 1 3 0 2 3 ] P B S = [ 2 3 3 2 1 3 0 1 2 0 1 3 1 2 3 ] [ x ] B = P B S x = [ 4 3 1 1 3 ]
    ::{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

    Let's now prove that this is an isomorphism
    ::现在让我们证明这是一个无形态主义

    First we can prove that this transformation is onto
    ::我们首先可以证明,这种转变已经进入了

    We see that because the basis vectors of the basis B are linearly independent we can gather that every element of  R 3  can be written as a linear combination of all of the vectors in B. To prove this, let's show that the matrix of the bases of B is invertible which is true, because the determinant is non-zero.
    ::我们可以看到,因为B基基的基矢量是线性独立的,所以我们可以收集到,R3的每一个元素都可以被写成B中所有矢量的线性组合。为了证明这一点,让我们证明B基的矩阵是不可逆的,这是真的,因为决定因素是非零。

    Next, we check for the transformation being one-to-one. 
    ::接下来,我们检查一对一的变换情况

    We must show that 
    ::我们必须表明,

    [ x 1 ] B = [ x 2 ] B x 1 = x 2 [ x 1 ] B = P B S x 1 [ x 2 ] B = P B S x 2 P B S x 1 = P B S x 2 P B S 1 P B S x 1 = P B S 1 P B S x 2 x 1 = x 2
    ::[x1}B=[x2}Bx1}x2}x2}[x1}B=BB=BB=BB=Sx1}[x2}]B=BB=Sx2}B=BB=Sx2}[x2}B=B=BB=Sx2}[x2}[x2}]B=B=PB=Sx2}[x2}]B=Sx1}[x1]B=B=B=BB=PB=BB*Sx1}Sx1}[x2}}]B=B=PB*Sx2}[x1]Sx1}[x2}}[x1]B}B=B=PB=PB=S_Sx2}[Sx2}[x2}B=S_BD*Sx1}[Sx1}[x1}B=S_B=S_B

    Hence we see that this is an isomorphism.
    ::因此,我们看到这是一种无形态主义。