圆形的切线线
章节大纲
-
When a line intersects a circle in exactly one point the line is said to be tangent to the circle or a tangent of the circle. This point is called the point of tangency .
::当一线在一点内将一圆相交时,该线据说与圆相切,或圆的正切。此点被称为相切点。+Do you want to reset the PLIX?You will prove that if a tangent line intersects a circle at point , then the tangent line is perpendicular to the radius drawn to point .
::您将证明,如果正切线在 P点交叉圆,则正切线与P点的半径垂直。From any point outside a circle, you can draw two lines tangent to the circle. You will learn how to construct these lines in problems later. Below, from point both lines and are tangent to circle .
::从圆外的任何一点, 您可以在圆上绘制两行切线。 您以后会学习如何在问题中构造这些线条 。 下面, 从 C 点 l 线和 m 线都切线到 A 圈 。In the second problem, y ou will show that in this situation, . In the third problem, you will show that and are supplementary.
::在第二个问题中,你将显示,在这种情况下,PC QQ。在第三个问题中,你将显示,QPAQ和QPCQ是补充性的。Let's look at a few example problems.
::让我们看看几个例子问题。1. Line is tangent to circle at point . Prove that line is perpendicular to .
::1. 线与P点圆A的线相切。 证明这条线与AP的垂直。This proof relies on the fact that the shortest distance from a point to a line is along the segment perpendicular to the line.
::这一证据所依据的事实是,从一个点到一条线的最短距离与直线垂直的段段相邻。Consider a point on line but not on circle . , because is outside circle . This means that the shortest distance from line to point is from point to point . Therefore, must be perpendicular to line .
::考虑一线的Q点,但不考虑A.A.A.A.AP圆的Q点,因为Q是圆A。这意味着从一线到A点的最短距离是从P点到A点。因此,AP'必须与一线垂直。2. From point , both lines and are tangent to circle . Show that . What does this mean in general?
::2. 从C点看,I线和m线都与A圈相切,显示PC {C}。这一般意味着什么?Draw a segment connecting and . Note that is also a right angle .
::绘制连接 A 和 C 的段。 请注意 AQC 也是一个右角度 。by the reflexive property and because they are both radii of the circle. This means that by . because the segments are corresponding parts of congruent triangles.
::CC AC 由反射属性和 PA A 组成,因为它们都是圆形的半径。 这意味着 HL 的 APC QC 。 PC PC QC , 因为各部分是相近三角形的对应部分 。and are known as tangent segments. In general, two tangent segments to a circle from the same point outside the circle will always be congruent.
::PC 和 QC 被称为正切区段。 一般来说, 两个相切区段到圆圈, 从圆圈外的同一点到圆圈, 总是一致的 。3. From point , both lines and are tangent to circle . Show that and are supplementary. What does this mean in general?
::3. 从C点看,一行和米线与圆A相切。 显示“PAQ”和“PCQ”是补充性的。is a right angle because line is tangent to circle at point . The sum of the measures of the interior angles of a quadrilateral is . This means that
::+QQC 是一个右角度, 因为线M 与 Q 点的圆 A 相切。 四边形内角的测量总和是 360 。 这意味着
::mPAmAQC+mPCmCPA=360。.
::-=YTET -伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=- 翻译:Therefore, and are supplementary.
::因此,“PAQ”和“PCQ”是补充性的。In general, the angle between two lines tangent to a circle from the same point will be supplementary to the central angle created by the two tangent lines.
::一般而言,两条正切线与同一点的圆之间的角,是对两条正切线所创造的中心角的补充。
Construct Tangents through an External Point
::通过外部点构造定点Use your compass and straightedge (or another construction device) to construct a circle and a point not on the circle. Label the center of the circle and the point not on the circle . Draw the line .
::使用您的指南针和直方( 或其他构造设备) 来构造圆, 而不是圆上的一个点。 标签是圆 A 的中心, 而不是圆 C 的中心。 绘制线性AC 。Construct the perpendicular bisector of in order to find its midpoint , .
::构造 AC 的垂直对角, 以便找到中点 M 。Then construct a circle centered at point that passes through point . The circle should also pass through point .
::然后在M点建造一个圆圈,穿过C点。 圆圈也应该穿过A点。Find the points of intersection and connect them with point .
::找到交叉点并将其与C点连接起来。Note that is a diameter of circle , so it divides circle into two semicircles. and are inscribed angles of these semicircles, so they must be right angles. meets radius at a right angle, so is tangent to circle . Similarly, meets radius at a right angle, so is tangent to circle .
::请注意, AC 是圆 M 的直径, 所以它将圆 M 分成两个半圆形。 QAPC 和 QAQC 是这些半圆形的刻度角, 所以它们必须是右角。 PC 在右角与半圆 AP 相匹配, 所以 PC 与圆 A 相切。 同样, QC 在右角与半圆 AQ 相匹配, 所以 QC 与圆 A 相切 。
Examples
::实例实例实例实例Example 1
::例1and are tangent to circle at points and respectively. What type of quadrilateral is ? Can you find ?
::DC 和 CE 分别与 D 点和 E 点的 A 圆相切。 ADCE 是哪一种四边形? 您能找到 mDCE 吗 ?and are both radii of the circle, so they are congruent. and are both tangent segments to the circle from the same point , so they are congruent. The quadrilateral has two pairs of adjacent congruent segments so it is a .
::DA 和 EA 均为圆形的半边形, 因此它们是一致的 。 DC 和 EC 是从同一个点( C) 到圆形的正切部分, 所以它们都是正切的。 四边形有两对相邻的相近相近部分, 所以它是一个 。. The means . Because and are tangent to circle , you know that and are supplementary . .
::mDE360238122。这意味着 mDAE=122。因为 DC和CE与A圈相切,你知道 DAE和ZDCE是补充的。 mDCE=18012258。CK-12 PLIX Interactive
::CK-12 PLIX 交互式互动Summary -
A
tangent line
is a line that intersects a circle in exactly one point.
::相切线是将圆交错于一点的直线。 -
A tangent line intersects a circle at point P, then the tangent line is perpendicular to the radius drawn to point P.
::相切线在 P 点交叉圆,则正切线与P 点的半径垂直。
Review
::审查审查审查审查1. What is a tangent line to a circle?
::1. 圆形的正切线是什么?For all pictures below, assume that lines that appear tangent are tangent. For questions #2 through #7 round your answers to the nearest hundredths place where needed.
::对于下面的所有图片, 假设显示相切的线是正切的。 对于问题2到7, 您在需要的地方将答案绕到最近的一百个地方 。Use the image below for #2-#3.
::使用下面的图像显示 # 2 # 3 。2. Draw in and find its length.
::2. 在AP中绘制并找到其长度。3. Find
::3. 寻找ACUse the image below for #4-#7.
::使用下面的图象显示 # 4 - # 7 。4. Find
::4. 寻找 mCAQ5. Find
::5. 寻找AQ6. Find
::6. 找到QC7. Find
::7. 寻找PCUse the image below for #8-#9.
::使用下面的图像显示 # 8- # 9 。8. Find
::8. 寻找 mP9. Find
::9. 寻找 mPEUse the image below for #10-#11. Also note that 62% of the circle is purple.
::使用下面的图像为 # 10 - # 11 。 请注意, 62% 的圆是紫色 。10. Find the measure of the purple arc.
::10. 找出紫弧的量度。11. Find the measure of angle .
::11. 寻找角度的度量 。Use the image below for #12-#13.
::使用下面的图像为 # 12- # 13 服务 。12. Make a conjecture about how and are related.
::12. 猜测一下“ABI”和“HGI”之间的关系。13. Prove your conjecture from #12.
::13. 证明你12号的猜想。14. Use construction tools of your choice to construct a circle and a point not on the circle. Then, construct two lines tangent to the circle that pass through the point. Hint: Look at the Guided Practice questions for the steps for this construction.
::14. 使用你选择的建筑工具来建造圆圈,而不是圆圈上的圆点,然后在穿过圆圈的圆圈上建造两条正切线。15. Justify why your construction from #14 created tangent lines.
::15. 说明为什么你从14号建筑中 产生了相切的线条。16. How many tangents can be drawn to a circle containing a point outside the circle? Explain. What if the tangent(s) contained a point inside the circle? What if the tangent(s) contained a point on the circle?
::16. 圆外含有点的圆圈可画出多少正切点?解释:如果正切点含有圆内的一个点,如何?如果圆上的正切点含有圆上的一个点,怎么办?Review (Answers)
::审查(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
A
tangent line
is a line that intersects a circle in exactly one point.