Section outline

  • Multi-Step Equations with Like Terms 
    ::具有类似条件的多级

    When we look at a linear equation we see two kinds of terms : those that contain the unknown variable , and those that don’t. When we look at an equation that has an x on both sides, we know that in order to solve it, we need to get all the x terms on one side of the equation. This is called combining like terms . The terms with an x in them are like terms because they contain the same variable (or, as you will see in later chapters, the same combination of variables).
    ::当我们看一个线性方程式时,我们看到两种术语:包含未知变量的术语和不包含变量的术语。 当我们看一个在两侧都有 x 的方程式时,我们知道,为了解决这个问题,我们需要将所有 x - 术语都放在方程式的一边。 这被称为类似术语的组合。 术语与 x 的词是相似的术语,因为它们包含相同的变量(或者,正如您在后面各章所看到的,变量的组合相同 ) 。

    Like Terms Unlike Terms
    4 x , 10 x , 3.5 x , and x 12 3 x and 3 y
    3 y , 0.000001 y , and y 4 x y and 4 x
    x y , 6 x y , and 2.39 x y 0.5 x and 0.5

    Using the Distributive Property of Multiplication 
    ::使用乘法分配属性

    To add or subtract like terms, we can use the of Multiplication .
    ::要增减类似术语,我们可以使用乘法。

    3 x + 4 x = ( 3 + 4 ) x = 7 x 0.03 x y 0.01 x y = ( 0.03 0.01 ) x y = 0.02 x y y + 16 y + 5 y = ( 1 + 16 + 5 ) y = 10 y 5 z + 2 z 7 z = ( 5 + 2 7 ) z = 0 z = 0

    ::3x+4x=(3+4)x=7x0.03xy-0.01xy=(0.03-0.01)xy=0.02xy-y+16y+5y=(-1+16+5)y=10y5z+2z-7z=(5+2-7)z=0z=0

    To solve an equation with two or more like terms, we need to combine the terms first.
    ::要用两个或两个以上类似术语来解决等式,我们首先需要将术语结合起来。

    Solving for Unknown Values 
    ::解决未知值

    1. Solve ( x + 5 ) ( 2 x 3 ) = 6 .
    ::1. 解决(x+5)-(2x-3)=6。

    There are two like terms: the x and the 2 x (don’t forget that the negative sign applies to everything in the parentheses). So we need to get those terms together. The associative and distributive properties let us rewrite the equation as x + 5 2 x + 3 = 6 , and then the commutative property lets us switch around the terms to get x 2 x + 5 + 3 = 6 , or ( x 2 x ) + ( 5 + 3 ) = 6 .
    ::有两个相似的术语: x 和 ~ 2x (不要忘记负符号适用于括号中的所有字符)。 所以我们需要把这些术语合并起来。 关联属性和分配属性让我们将方程式重写为 x+5 - 2x+3=6, 然后通量属性让我们转换条件以获得 x-2x+5+3=6 或 (x-2x)+5+3=6 。

    ( x 2 x ) is the same as ( 1 2 ) x , or x , so our equation becomes x + 8 = 6
    :sadx-2x) 与 (1-2x) 相同, 或 -x, 所以我们的方程式变成 - x+8=6

    Subtracting 8 from both sides gives us x = 2 .
    ::从两边减去8后,我们得出了-x2。

    And finally, multiplying both sides by -1 gives us x = 2 .
    ::最后,两边乘以 -1 给我们x=2。

    2. Solve x 2 x 3 = 6 .
    ::2. 解决 x2-x3=6。

    This problem requires us to deal with fractions. We need to write all the terms on the left over a common denominator of six.
    ::这个问题要求我们处理分数问题,我们需要在六分之六的共同标准之上写下左侧的所有术语。

    3 x 6 2 x 6 = 6

    ::3x6-2x6=6

    Then we subtract the fractions to get x 6 = 6 .
    ::然后我们减去分数以获得 x6=6 。

    Finally we multiply both sides by 6 to get x = 36 .
    ::最后,我们把两边乘以6 以获得x=36。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Solve 2 x 5 3 x 2 = 11 .
    ::解决 2x5 - 3x2=11 。

    This problem requires us to deal with fractions. We need to write all the terms on the left over a common denominator of ten.
    ::这个问题要求我们处理分数问题,我们需要将左侧的所有条款写在10个共同标准之上。

    4 x 10 15 x 10 = 11

    ::4x10-15x10=11

    Then we subtract the fractions to get 11 x 10 = 11 .
    ::然后我们减去分数以获得 - 11x10=11。

    Finally we multiply both sides by 10 11 :
    ::最后,我们把两边乘以-1011:

    11 x 10 10 11 = 11 10 11
    ::- 11x101011=111011

    to get x = 10 .
    ::以获得 x10。

    Review 
    ::回顾

    Solve the following equations for the unknown variable.
    ::为未知变量解决以下方程式。

    1. 1.3 x 0.7 x = 12
      ::1.3x-0.7x=12
    2. 10 a 2 ( a + 5 ) = 14
      ::-10a-2(a+5)=14
    3. 5 ( 2 y 3 y ) = 20
      ::5( 2y- 3y) @% 20
    4. 2 3 x 1 5 x = 14 15
      ::23-15x=1415
    5. 5 x ( 3 x + 2 ) = 1
      ::5x-(3x+2)=1
    6. s 3 s 8 = 5 6
      ::3s8=56
    7. 10 ( y + 5 y ) = 10
      ::10(y+5y)=10
    8. 2.3 x + 2 ( 0.75 x 3.5 ) = 7.5
      ::2.3x+2(0.75x-3.5)=7.5
    9. 3 ( x + 2 ) + 5 ( 2 x ) = 32
      ::3(x+2)+5(2-x)_____________________________________________________________________________________________________________________________________________________________
    10. 6 x + 2 ( 5 x 2 ) = 12
      ::6x+2(5x-2)=12

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。