具有类似条件的多级
Section outline
-
Multi-Step Equations with Like Terms
::具有类似条件的多级When we look at a linear equation we see two kinds of terms : those that contain the unknown variable , and those that don’t. When we look at an equation that has an on both sides, we know that in order to solve it, we need to get all the terms on one side of the equation. This is called combining like terms . The terms with an in them are like terms because they contain the same variable (or, as you will see in later chapters, the same combination of variables).
::当我们看一个线性方程式时,我们看到两种术语:包含未知变量的术语和不包含变量的术语。 当我们看一个在两侧都有 x 的方程式时,我们知道,为了解决这个问题,我们需要将所有 x - 术语都放在方程式的一边。 这被称为类似术语的组合。 术语与 x 的词是相似的术语,因为它们包含相同的变量(或者,正如您在后面各章所看到的,变量的组合相同 ) 。Like Terms Unlike Terms and and and and and and Using the Distributive Property of Multiplication
::使用乘法分配属性To add or subtract like terms, we can use the of Multiplication .
::要增减类似术语,我们可以使用乘法。
::3x+4x=(3+4)x=7x0.03xy-0.01xy=(0.03-0.01)xy=0.02xy-y+16y+5y=(-1+16+5)y=10y5z+2z-7z=(5+2-7)z=0z=0To solve an equation with two or more like terms, we need to combine the terms first.
::要用两个或两个以上类似术语来解决等式,我们首先需要将术语结合起来。Solving for Unknown Values
::解决未知值1. Solve .
::1. 解决(x+5)-(2x-3)=6。There are two like terms: the and the (don’t forget that the negative sign applies to everything in the parentheses). So we need to get those terms together. The associative and distributive properties let us rewrite the equation as , and then the commutative property lets us switch around the terms to get , or .
::有两个相似的术语: x 和 ~ 2x (不要忘记负符号适用于括号中的所有字符)。 所以我们需要把这些术语合并起来。 关联属性和分配属性让我们将方程式重写为 x+5 - 2x+3=6, 然后通量属性让我们转换条件以获得 x-2x+5+3=6 或 (x-2x)+5+3=6 。is the same as , or , so our equation becomes
:x-2x) 与 (1-2x) 相同, 或 -x, 所以我们的方程式变成 - x+8=6
Subtracting 8 from both sides gives us .
::从两边减去8后,我们得出了-x2。And finally, multiplying both sides by -1 gives us .
::最后,两边乘以 -1 给我们x=2。2. Solve .
::2. 解决 x2-x3=6。This problem requires us to deal with fractions. We need to write all the terms on the left over a common denominator of six.
::这个问题要求我们处理分数问题,我们需要在六分之六的共同标准之上写下左侧的所有术语。
::3x6-2x6=6Then we subtract the fractions to get .
::然后我们减去分数以获得 x6=6 。Finally we multiply both sides by 6 to get .
::最后,我们把两边乘以6 以获得x=36。Example
::示例示例示例示例Example 1
::例1Solve .
::解决 2x5 - 3x2=11 。This problem requires us to deal with fractions. We need to write all the terms on the left over a common denominator of ten.
::这个问题要求我们处理分数问题,我们需要将左侧的所有条款写在10个共同标准之上。
::4x10-15x10=11Then we subtract the fractions to get .
::然后我们减去分数以获得 - 11x10=11。Finally we multiply both sides by
::最后,我们把两边乘以-1011:
::- 11x101011=111011to get .
::以获得 x10。Review
::回顾Solve the following equations for the unknown variable.
::为未知变量解决以下方程式。-
::1.3x-0.7x=12 -
::-10a-2(a+5)=14 -
::5( 2y- 3y) @% 20 -
::23-15x=1415 -
::5x-(3x+2)=1 -
::3s8=56 -
::10(y+5y)=10 -
::2.3x+2(0.75x-3.5)=7.5 -
::3(x+2)+5(2-x)_____________________________________________________________________________________________________________________________________________________________ -
::6x+2(5x-2)=12
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -