水平和垂直线图
章节大纲
-
Horizontal and Vertical Line Graphs
::水平和垂直线图How do you graph equations of horizontal and vertical lines? See how in the example below.
::您如何绘制水平线和垂直线的方程式? 请参见下面的例子 。“Mad-cabs” have an unusual offer going on. They are charging $7.50 for a taxi ride of any length within the city limits. Graph the function that relates the cost of hiring the taxi "> to the length of the journey in miles .
::“Mad-cabs”的报价不同寻常,他们向市内任何长的出租车收费7.50美元,将租用出租车的费用与行程的里程(x)联系起来。
To proceed, the first thing we need is an equation . You can see from the problem that the cost of a journey doesn’t depend on the length of the journey. It should come as no surprise that the equation then, does not have in it. Since any value of results in the same value of , the value you choose for doesn’t matter, so it isn’t included in the equation. Here is the equation:
::要继续,我们首先需要的是方程。你可以从一个问题中看到,旅程的成本并不取决于旅程的长度。那么,这个方程没有 x 并不令人惊讶。 由于x 的任何值都得出与 y( 7. 5) 相同的值, 因此您选择的 x 值并不重要, 所以它没有包括在方程中 。 这里的方程是:
::y=7.5 y=7.5The graph of this function is shown below. You can see that it’s simply a horizontal line.
::此函数的图示显示在下面。您可以看到它只是一条水平线。Any time you see an equation of the form “ constant ,” the graph is a horizontal line that intercepts the axis at the value of the constant.
::当您看到“y=常数”形式的方程式时, 图形是一条水平线, 以常数的值截取 y- 轴 。Similarly, when you see an equation of the form constant, then the graph is a vertical line that intercepts the axis at the value of the constant. (Notice that that kind of equation is a relation , and not a function, because each value (there’s only one in this case) corresponds to many (actually an infinite number) values.)
::同样,当您看到窗体 x= 常量的方程式时,图形是一条垂直线,以常量的值截取 x- 轴值。 (注意,这种方程式是一种关系,而不是函数,因为每个 x- 值(在此情况下只有一个)都对应许多 y- 值(实际上是一个无限的数字) y- 值 。)Plotting Graphs
::绘图图图Plot the following graphs.
::绘制下图 。(a)
:a)y=4
is a horizontal line that crosses the axis at 4.
::y=4 是一条水平线, 4 时横跨 y- 轴 。(b)
:b) y4
is a horizontal line that crosses the axis at −4.
::y4 是一条横线, 横跨 y - 轴 的 y 4 。(c)
:c) x=4
is a vertical line that crosses the axis at 4.
::x=4 是一条垂直线, 横跨 x - 轴 4 时的 x - 轴 。(d)
:d) x4
is a vertical line that crosses the axis at −4.
::x4 是一条垂直线, 横跨 x - 轴 4 的 x - 轴 。Finding an Equation
::查找等量Find an equation for the axis and the axis.
::查找 x - 轴和 y - 轴的方程式 。Look at the axes on any of the graphs from previous examples. We have already said that they intersect at the origin (the point where and ). The following definition could easily work for each axis.
::查看先前示例中任何图表的轴。 我们已经说过, 这些轴在来源处交叉( x=0 和 y=0 的点 ) 。 以下定义很容易为每个轴工作 。axis: A horizontal line crossing the axis at zero.
::x- 轴: 横线在零时横过 y- 轴。axis: A vertical line crossing the axis at zero.
::y-轴:一条垂直线在零时穿过 x-轴线。So using example 3 as our guide, we could define the axis as the line and the axis as the line .
::因此,以例3作为我们的指南, 我们可以将 x - 轴定义为 y=0 线, y - 轴定义为 x=0 线 。Example
::示例示例示例示例Example 1
::例1Write the equation of the horizontal line that is 3 units below the x-axis .
::写入 X 轴下方3 个单位的水平线的方程式。The horizontal line that is 3 units below the x-axis will intercept the y-axis at . No matter what the value of x, the y value of the line will always be -3. This means that the equations for the line is .
::x 轴下方的 3 个单位的水平线将拦截 Y 轴 y 3 。 无论 x 值是多少, 该线的 y 值总是 - 3 。 这意味着该线的方程式是 y 3 。Review
::回顾-
Write the equations for the five lines (
through
) plotted in the graph below.
::在下图中绘制五个行(A至E)的方程。
For 2-10, use the graph above to determine at what points the following lines intersect.
::2-10时,使用上图确定在什么点上以下线交叉。-
and
::A和E -
and
::A和D -
and
::C和D -
and the
axis
::B和y-轴 -
and the
axis
::E 和 x- 轴 -
and the line
::C 和 y=x 线 y=x -
and the line
::E 行 Y=12x -
and the line
::A 和 y=x+3 线条 -
and the line
::B 和 y2x 线
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Write the equations for the five lines (
through
) plotted in the graph below.