章节大纲

  • Exponential Terms Raised to an Exponent 
    ::提高至指数值的指数值术语

    What happens when we raise a whole expression to a power? Let’s take x to the power of 4 and cube it . Again we’ll use the full factored form for each expression:
    ::当我们提高整个电源的表达方式时会怎样?让我们把 x 带到 4 和 立方体的表达方式。 我们再次对每个表达方式使用完整因素的表达方式 :

    ( x 4 ) 3 = x 4 × x 4 × x 4 3   f a c t o r s   o f   { x   t o   t h e   p o w e r   4 } ( x x x x ) ( x x x x ) ( x x x x ) = x x x x x x x x x x x x = x 12

    :伤心x4)3=x4xx4xx4x4xxxx43 乘以 {x 到功率 4} (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    So ( x 4 ) 3 = x 12 . You can see that when we raise a power of x to a new power, the powers multiply.
    ::So (x4) 3=x12。 您可以看到当我们将 x 的功率提升到新功率时, 功率会倍增 。

    Power Rule for Exponents: ( x n ) m = x ( n m )
    ::指数规则 : (xn) m=x否 m

    If we have a product of more than one term inside the " data-term="Parentheses" role="term" tabindex="0"> parentheses , then we have to distribute the exponent over all the factors, like distributing multiplication over addition . For example:
    ::如果我们在括号内有一个多个术语的产物,那么我们就必须在所有因素上分配引号,例如分配乘法乘法加法。例如:

    %5E4%20%3D%20x%5E8y%5E4.">

    ( x 2 y ) 4 = ( x 2 ) 4 ( y ) 4 = x 8 y 4 .

    :伤心x2y)4=(x2)4是的4=x8y4。

    Or, writing it out the long way:
    ::或者,写出来很长的路要走:

    ( x 2 y ) 4 = ( x 2 y ) ( x 2 y ) ( x 2 y ) ( x 2 y ) = ( x x y ) ( x x y ) ( x x y ) ( x x y ) = x x x x x x x x y y y y = x 8 y 4

    :伤心x2y) 4= (x2y)(x2y)(x2y)(x2y)(x2y) = (xxxx非) (xxxx非) (xxxx非) =xxxx非) =xxxxxxxxxxxxxx非) =x*xxxxxxxxxxxxxxxxxxx

    Note that this does NOT work if you have a sum or difference inside the parentheses! For example, ( x + y ) 2 x 2 + y 2 . This is an easy mistake to make, but you can avoid it if you remember what an exponent means: if you multiply out ( x + y ) 2 it becomes ( x + y ) ( x + y ) , and that’s not the same as x 2 + y 2 . We’ll learn how we can simplify this expression in a later chapter.
    ::请注意, 如果您在括号内有一个总和或差数, 此操作无效 。 例如, (x+y) 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Simplifying Expressions 
    ::简化表达式

    1. Simplify the following expressions.
    ::1. 简化以下表达式。

    When we’re just working with numbers instead of variables, we can use the product rule and the power rule, or we can just do the multiplication and then simplify.
    ::当我们只是用数字而不是变量来工作时, 我们可以使用产品规则和电力规则, 或者我们可以做乘法然后简化。

    a)  3 5 3 7
    :伤心a) 35日37

    We can use the product rule first and then evaluate the result: 3 5 3 7 = 3 12 = 531441 .
    ::我们可以首先使用产品规则,然后对结果进行评估:35日37=312=531441。

    OR we can evaluate each part separately and then multiply them: 3 5 3 7 = 243 2187 = 531441 .
    ::我们可以分别评估每一部分,然后乘以:35日37=243日2187=531441。

    b)  2 6 2
    :伤心b) 262

    We can use the product rule first and then evaluate the result: 2 6 2 = 2 7 = 128 .
    ::我们可以首先使用产品规则,然后对结果进行评估:262=27=128。

    OR we can evaluate each part separately and then multiply them: 2 6 2 = 64 2 = 128 .
    ::我们可以分别评估每一部分,然后乘以:262=642=128。

    c)  ( 4 2 ) 3
    :伤心c) (42)3

    We can use the power rule first and then evaluate the result: ( 4 2 ) 3 = 4 6 = 4096 .
    ::我们可以首先使用权力规则,然后评估结果伤心42)3=46=4096。

    OR we can evaluate the expression inside the parentheses first, and then apply the exponent outside the parentheses: ( 4 2 ) 3 = ( 16 ) 3 = 4096 .
    ::OR 我们可以首先评价括号内的表达式, 然后应用括号外的引号伤心423=(16)3=4096)。

    2. Simplify the following expressions.
    ::2. 简化以下表达式。

    When we’re just working with variables, all we can do is simplify as much as possible using the product and power rules.
    ::当我们只是与变数合作时, 我们所能做的就是尽量简化使用产品和电力规则。

    a)  x 2 x 7
    ::a) x2x7

    x 2 x 7 = x 2 + 7 = x 9
    ::x2x7=x2+7=x9

    b)  ( y 3 ) 5
    :伤心b) (y3)5

    ( y 3 ) 5 = y 3 × 5 = y 15
    :伤心y3)5=y3x5=y15

    3. Simplify the following expressions.
    ::3. 简化以下表达式。

    When we have a mix of numbers and variables, we apply the rules to each number and variable separately.
    ::当我们混合了数字和变量时,我们将规则分别适用于每个数字和变量。

    a) ( 3 x 2 y 3 ) ( 4 x y 2 )
    :伤心a) (3x2y3)□(4x2)

    First we group like terms together: ( 3 x 2 y 3 ) ( 4 x y 2 ) = ( 3 4 ) ( x 2 x ) ( y 3 y 2 )
    ::首先,我们将类似术语组合为: (3x2y3) (4xy2) = (3}4) (x2xx) (y3y2)

    Then we multiply the numbers or apply the product rule on each grouping: = 12 x 3 y 5
    ::然后我们乘以数字或对每个组别应用产品规则:=12x3y5

    b)  ( 4 x y z ) ( x 2 y 3 ) ( 2 y z 4 )
    :伤心b) (4xyz)□(x2y3)□(2yz4)

    Group like terms together: ( 4 x y z ) ( x 2 y 3 ) ( 2 y z 4 ) = ( 4 2 ) ( x x 2 ) ( y y 3 y ) ( z z 4 )
    ::组式相同词组 : (4xyz) (x2y3) (2yz4) = (4}2}(xxx2) (yy3y) (zz4)

    Multiply the numbers or apply the product rule on each grouping: = 8 x 3 y 5 z 5
    ::乘以数字或对每个组别应用产品规则:=8x3y5z5

    c)  ( 2 a 3 b 3 ) 2
    :伤心c) (2a3b3)2

    Apply the power rule for each separate term in the parentheses: ( 2 a 3 b 3 ) 2 = 2 2 ( a 3 ) 2 ( b 3 ) 2
    ::括号内为每个单独的术语适用权力规则伤心2a3b3)2=22(a3)22(b3)2

    Multiply the numbers or apply the power rule for each term = 4 a 6 b 6
    ::乘以数字或应用每个术语 = 4a6b6 的权力规则

    Examples 
    ::实例

    Simplify the following expressions.
    ::简化下列表达式。

    In problems where we need to apply the product and power rules together, we must keep in mind the . Exponent operations take precedence over multiplication.
    ::在我们需要共同适用产品和权力规则的问题中,我们必须牢记.能见性操作优先于倍增。

    Example 1
    ::例1

    ( x 2 ) 2 x 3
    :伤心x2)2xx3

    We apply the power rule first: ( x 2 ) 2 x 3 = x 4 x 3
    ::我们首先应用权力规则伤心x2)2x3=x4x3

    Then apply the product rule to combine the two terms : x 4 x 3 = x 7
    ::然后应用产品规则将两个词: x4x3=x7合并

    Example 2
    ::例2

    ( 2 x 2 y ) ( 3 x y 2 ) 3
    :伤心2x2y)(3x2)3

    Apply the power rule first: ( 2 x 2 y ) ( 3 x y 2 ) 3 = ( 2 x 2 y ) ( 27 x 3 y 6 )
    ::首先应用权力规则 : (2x2y) = (2x2y) = (2x2y) = (27x3y6)

    Then apply the product rule to combine the two terms: ( 2 x 2 y ) ( 27 x 3 y 6 ) = 54 x 5 y 7
    ::然后适用产品规则,将两个术语合并伤心2x2y)(27x3y6)=54x5y7)

    Example 2
    ::例2

    ( 4 a 2 b 3 ) 2 ( 2 a b 4 ) 3
    :伤心4a2b3)2(2ab4)3

    Apply the power rule on each of the terms separately: ( 4 a 2 b 3 ) 2 ( 2 a b 4 ) 3 = ( 16 a 4 b 6 ) ( 8 a 3 b 12 )
    ::分别对每个条款分别适用权力规则: (4a2b3)2(2ab4)3=(16a4b6)_(8a3b12)

    Then apply the product rule to combine the two terms: ( 16 a 4 b 6 ) ( 8 a 3 b 12 ) = 128 a 7 b 18
    ::然后适用产品规则,将两个术语结合起来: (16a4b6)(8a3b12)=128a7b18

    Review 
    ::回顾

    Simplify:
    ::简化 :

    1. ( a 3 ) 4
      :伤心a3)4
    2. ( x y ) 2
      :伤心xy)2
    3. ( 5 y ) 3
      :伤心-5y)3
    4. ( 3 a 2 b 3 ) 4
      :伤心3a2b3)4
    5. ( 2 x y 4 z 2 ) 5
      :伤心-2xy4z2)5
    6. ( 8 x ) 3 ( 5 x ) 2
      :伤心-8x)3(5x)2
    7. ( x ) 2 ( x y ) 3
      :伤心xx)(xy)3
    8. ( 4 a 2 ) ( 2 a 3 ) 4
      :伤心4a2)(-2a3)4
    9. ( 12 x y ) ( 12 x y ) 2
      :伤心12xy)(12xy)2
    10. ( 2 x y 2 ) ( x 2 y ) 2 ( 3 x 2 y 2 )
      :伤心2x)(-x2y)(2x2x2y)(2x2x2y)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。