使用平方差法进行分化
章节大纲
-
Factorization Using Difference of Squares
::利用广场差异的因数化When you learned how to multiply binomials we talked about two special products.
::当你学会如何乘以二元论时 我们谈论了两种特殊产品
::总和和差值公式(a+b)(a-b)=a2-b2 二元公式的平方a+b)2=a2+2ab+2ab+b2(a-b)2=a2-2ab+b2b2=a2-2ab+b2
In this section we’ll learn how to recognize and factor these special products.
::我们将学习如何认识这些特殊产品,Factor the Difference of Two Squares
::两平方之差的因数We use the sum and difference formula to factor a difference of two squares. A difference of two squares is any quadratic polynomial in the form , where and can be variables, constants, or just about anything else. The factors of are always ; the key is figuring out what the and terms are.
::我们用总和和差数公式来乘以两个正方形的差数。两个正方形的差数是A2-b2形式中的任何四边多边形,其中a和b可以是变量、常数,也可以是其他任何东西。a2-b2的因数总是(a+b)(a-b)-b;关键是确定a和b条件是什么。Factoring the Difference of Squares
::计算平方之差1. Factor the difference of squares :
::1. 将平方差乘以:a)
::a) x2-9Rewrite as . Now it is obvious that it is a difference of squares.
::将 x2- 9 重写为 x2-32. 现在很明显,它是方形的差别。The difference of squares formula is:
::方形公式的差别是:
::a2-b2=(a+b)(a-b)Let’s see how our problem matches with the formula:
::让我们看看我们的问题如何与公式相吻合:
::x2-32=(x+3)(x-3)The answer is:
::答案是:
::x2- 9= (x+3)(x-3)We can check to see if this is correct by multiplying :
::我们可以通过乘法( x+3)( x- 3) 检查是否正确 :
::x+3x-33x-9x2+3xxxx2+0x-9The answer checks out.
::答案检查出来。Note: We could factor this polynomial without recognizing it as a difference of squares. With the methods we learned in the last section we know that a quadratic polynomial factors into the product of two binomials:
::注意: 我们可以在不确认它为方形差异的情况下, 将这一多元性因素考虑在内。 根据我们在最后一节中学到的方法, 我们知道,在两个二进制的产物中, 有一种四进制的多元性因素:
:x)(x)
We need to find two numbers that multiply to -9 and add to 0 (since there is no term , that’s the same as if the term had a coefficient of 0). We can write -9 as the following products:
::我们需要找到两个乘以 -9 并加到 0 的数字(因为没有x- term, 这与x- term 的系数值为 0 相同) 我们可以将 - 9 写成以下产品 :
::-=9=9=9=9=9=9=11=9=9=9=9=9=9=8=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=3=3=3=3=3=3=0=0为正确数字。We can factor as , which is the same answer as before. You can always factor using the methods you learned in the previous section, but recognizing special products helps you factor them faster.
::我们可以将x2- 9乘以( x+3)( x- 3) , 这和以前一样。 您总是可以使用上一节中学习的方法来计算, 但承认特殊产品有助于您更快地计算。b)
:b) x2-100
Rewrite as . This factors as .
::重写 x2 - 100 的 x2 - 102. 这些系数为 (x+10) (x- 10) 。c)
::c) x2-1Rewrite as . This factors as .
::将 x2 - 1 重写为 x2 - 12. 。 该系数为 (x+1)(x- 1) 。2. Factor the difference of squares:
::2. 将平方差乘以:a)
:a) 16x2-2-25
Rewrite as . This factors as .
::将 16x2-25 重写为 (4x)2-52。 该系数为 (4x+5)(4x-5) 。b)
:b) 4x2-81
Rewrite as . This factors as .
::将 4x2-81 重写为 2x)2-92。 该系数为 2x+9 (2x-9) 。c)
:c) 49x2-64
Rewrite as . This factors as .
::将49x2-64重写为(7x)2-82。这一系数为(7x+8)(7x-8)。3. Factor the difference of squares:
::3. 将平方差乘以:a)
::a) x2-y2factors as .
::x2-y2 系数为 (x+y)(x-y) 。b)
:b) 9x2-4y2
Rewrite as . This factors as .
::将 9x2--4y2 重写为 (3x)2- (2y)2. 这个系数为 (3x+2y)(3x- 2y) 。c)
:c) x2y2-2-1
Rewrite as . This factors as .
::将 x2y2- 1 重写为 (xy) 2-12。 该系数为 (xy+1)(xy-1) 。Examples
::实例Factor the difference of squares:
::平方之差的乘数 :Example 1
::例1
::x4 - 25Rewrite as . This factors as .
::将x4-25重写为(x2)2-2-52。此系数为(x2+5)(x2-5)。Example 2
::例2
::16x4-y2 16x4-y2Rewrite as . This factors as .
::将 16x4-y2 重写为 (4x2)2-2-y2. 这个系数为 (4x2+y)(4x2-y)。Example 3
::例3
::x2y8-64z2Rewrite as . This factors as .
::将x2y4-64z2重写为(xy2)2-2-(8z)2. 该系数为(xy2+8z)(xy2-8z)。Review
::回顾Factor the following differences of squares.
::乘以下列方形差异。-
::x2 - 4 -
::x2-36 -
::-x2+100 -
::x2- 4000 x2 - 4000 -
::9x2-4 -
::25x2-49 -
::9a2-25b2 -
::- 36x2+25 -
::4x2 - Y2 -
::16x2-81y2
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -