章节大纲

  • Factorization Using Difference of Squares 
    ::利用广场差异的因数化

    When you learned how to multiply binomials we talked about two special products.
    ::当你学会如何乘以二元论时 我们谈论了两种特殊产品

    The sum and difference formula: ( a + b ) ( a b ) = a 2 b 2 The square of a binomial formulas:     ( a + b ) 2 = a 2 + 2 a b + b 2 ( a b ) 2 = a 2 2 a b + b 2

    ::总和和差值公式(a+b)(a-b)=a2-b2 二元公式的平方伤心a+b)2=a2+2ab+2ab+b2(a-b)2=a2-2ab+b2b2=a2-2ab+b2

    In this section we’ll learn how to recognize and factor these special products.
    ::我们将学习如何认识这些特殊产品,

    Factor the Difference of Two Squares
    ::两平方之差的因数

    We use the sum and difference formula to factor a difference of two squares. A difference of two squares is any quadratic polynomial in the form a 2 b 2 , where a and b can be variables, constants, or just about anything else. The factors of a 2 b 2 are always ( a + b ) ( a b ) ; the key is figuring out what the a and b terms are.
    ::我们用总和和差数公式来乘以两个正方形的差数。两个正方形的差数是A2-b2形式中的任何四边多边形,其中a和b可以是变量、常数,也可以是其他任何东西。a2-b2的因数总是(a+b)(a-b)-b;关键是确定a和b条件是什么。

    Factoring the Difference of Squares
    ::计算平方之差

    1. Factor the difference of squares :
    ::1. 将平方差乘以:

    a)  x 2 9
    ::a) x2-9

    Rewrite x 2 9 as x 2 3 2 . Now it is obvious that it is a difference of squares.
    ::将 x2- 9 重写为 x2-32. 现在很明显,它是方形的差别。

    The difference of squares formula is:
    ::方形公式的差别是:

    a 2 b 2 = ( a + b ) ( a b )
    ::a2-b2=(a+b)(a-b)

    Let’s see how our problem matches with the formula:
    ::让我们看看我们的问题如何与公式相吻合:

    x 2 3 2 = ( x + 3 ) ( x 3 )
    ::x2-32=(x+3)(x-3)

    The answer is:
    ::答案是:

    x 2 9 = ( x + 3 ) ( x 3 )
    ::x2- 9= (x+3)(x-3)

    We can check to see if this is correct by multiplying ( x + 3 ) ( x 3 ) :
    ::我们可以通过乘法( x+3)( x- 3) 检查是否正确 :

        x + 3 x 3 _ 3 x 9 x 2 + 3 x _ x 2 + 0 x 9

    ::x+3x-33x-9x2+3xxxx2+0x-9

    The answer checks out.
    ::答案检查出来。

    Note: We could factor this polynomial without recognizing it as a difference of squares. With the methods we learned in the last section we know that a quadratic polynomial factors into the product of two binomials:
    ::注意: 我们可以在不确认它为方形差异的情况下, 将这一多元性因素考虑在内。 根据我们在最后一节中学到的方法, 我们知道,在两个二进制的产物中, 有一种四进制的多元性因素:

    ( x ) ( x )

    :伤心x)(x)

    We need to find two numbers that multiply to -9 and add to 0 (since there is no x term , that’s the same as if the x term had a coefficient of 0). We can write -9 as the following products:
    ::我们需要找到两个乘以 -9 并加到 0 的数字(因为没有x- term, 这与x- term 的系数值为 0 相同) 我们可以将 - 9 写成以下产品 :

    9 = 1 9 and 1 + 9 = 8 9 = 1 ( 9 ) and 1 + ( 9 ) = 8 9 = 3 ( 3 ) and 3 + ( 3 ) = 0 T h e s e   a r e   t h e   c o r r e c t   n u m b e r s .

    ::-=9=9=9=9=9=9=11=9=9=9=9=9=9=8=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=9=3=3=3=3=3=3=0=0为正确数字。

    We can factor x 2 9 as ( x + 3 ) ( x 3 ) , which is the same answer as before. You can always factor using the methods you learned in the previous section, but recognizing special products helps you factor them faster.
    ::我们可以将x2- 9乘以( x+3)( x- 3) , 这和以前一样。 您总是可以使用上一节中学习的方法来计算, 但承认特殊产品有助于您更快地计算。

    b)  x 2 100
    :伤心b) x2-100

    Rewrite x 2 100 as x 2 10 2 . This factors as ( x + 10 ) ( x 10 ) .
    ::重写 x2 - 100 的 x2 - 102. 这些系数为 (x+10) (x- 10) 。

    c)  x 2 1
    ::c) x2-1

    Rewrite x 2 1 as x 2 1 2 . This factors as ( x + 1 ) ( x 1 ) .
    ::将 x2 - 1 重写为 x2 - 12. 。 该系数为 (x+1)(x- 1) 。

    2. Factor the difference of squares:
    ::2. 将平方差乘以:

    a)  16 x 2 25
    :伤心a) 16x2-2-25

    Rewrite 16 x 2 25 as ( 4 x ) 2 5 2 . This factors as ( 4 x + 5 ) ( 4 x 5 ) .
    ::将 16x2-25 重写为 (4x)2-52。 该系数为 (4x+5)(4x-5) 。

    b)  4 x 2 81
    :伤心b) 4x2-81

    Rewrite 4 x 2 81 as ( 2 x ) 2 9 2 . This factors as ( 2 x + 9 ) ( 2 x 9 ) .
    ::将 4x2-81 重写为 2x)2-92。 该系数为 2x+9 (2x-9) 。

    c)  49 x 2 64
    :伤心c) 49x2-64

    Rewrite 49 x 2 64 as ( 7 x ) 2 8 2 . This factors as ( 7 x + 8 ) ( 7 x 8 ) .
    ::将49x2-64重写为(7x)2-82。这一系数为(7x+8)(7x-8)。

    3. Factor the difference of squares:
    ::3. 将平方差乘以:

    a)  x 2 y 2
    ::a) x2-y2

    x 2 y 2 factors as ( x + y ) ( x y ) .
    ::x2-y2 系数为 (x+y)(x-y) 。

    b)  9 x 2 4 y 2
    :伤心b) 9x2-4y2

    Rewrite 9 x 2 4 y 2 as ( 3 x ) 2 ( 2 y ) 2 . This factors as ( 3 x + 2 y ) ( 3 x 2 y ) .
    ::将 9x2--4y2 重写为 (3x)2- (2y)2. 这个系数为 (3x+2y)(3x- 2y) 。

    c)  x 2 y 2 1
    :伤心c) x2y2-2-1

    Rewrite x 2 y 2 1 as ( x y ) 2 1 2 . This factors as ( x y + 1 ) ( x y 1 ) .
    ::将 x2y2- 1 重写为 (xy) 2-12。 该系数为 (xy+1)(xy-1) 。

    Examples
    ::实例

    Factor the difference of squares:
    ::平方之差的乘数 :

    Example 1
    ::例1

    x 4 25
    ::x4 - 25

    Rewrite x 4 25 as ( x 2 ) 2 5 2 . This factors as ( x 2 + 5 ) ( x 2 5 ) .
    ::将x4-25重写为(x2)2-2-52。此系数为(x2+5)(x2-5)。

    Example 2
    ::例2

    16 x 4 y 2
    ::16x4-y2 16x4-y2

    Rewrite 16 x 4 y 2 as ( 4 x 2 ) 2 y 2 . This factors as ( 4 x 2 + y ) ( 4 x 2 y ) .
    ::将 16x4-y2 重写为 (4x2)2-2-y2. 这个系数为 (4x2+y)(4x2-y)。

    Example 3
    ::例3

    x 2 y 8 64 z 2
    ::x2y8-64z2

    Rewrite x 2 y 4 64 z 2 as ( x y 2 ) 2 ( 8 z ) 2 . This factors as ( x y 2 + 8 z ) ( x y 2 8 z ) .
    ::将x2y4-64z2重写为(xy2)2-2-(8z)2. 该系数为(xy2+8z)(xy2-8z)。

    Review
    ::回顾

    Factor the following differences of squares.
    ::乘以下列方形差异。

    1. x 2 4
      ::x2 - 4
    2. x 2 36
      ::x2-36
    3. x 2 + 100
      ::-x2+100
    4. x 2 400
      ::x2- 4000 x2 - 4000
    5. 9 x 2 4
      ::9x2-4
    6. 25 x 2 49
      ::25x2-49
    7. 9 a 2 25 b 2
      ::9a2-25b2
    8. 36 x 2 + 25
      ::- 36x2+25
    9. 4 x 2 y 2
      ::4x2 - Y2
    10. 16 x 2 81 y 2
      ::16x2-81y2

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。