章节大纲

  • Vertex Form of a Quadratic Equation 
    ::赤道等量的垂直方格

    Probably one of the best applications of the method of is using it to rewrite a quadratic function in vertex form. The vertex form of a quadratic function is
    ::方法的最佳应用之一可能是使用它重写顶点形式的二次函数。二次函数的顶点形式是二次函数。

    y k = a ( x h ) 2

    ::y-k=a(x-h)2

    This form is very useful for graphing because it gives the vertex of the parabola explicitly. The vertex is at the point ( h , k ) .
    ::此窗体对于图形化非常有用, 因为它明确给出了抛物线的顶点。 顶点在( h, k) 。

    It is also simple to find the x intercepts from the vertex form: just set y = 0 and take the square root of both sides of the resulting equation .
    ::从顶端形态中查找 x - inter 点也很简单: 只需设置 y=0 并取出结果方程式两侧的平方根 。

    To find the y intercept , set x = 0 and simplify.
    ::查找 y - 界面, 设置 x=0 并简化 。

    Finding the Vertex and Intercepts of Parabolas 
    ::找到Parabolas的动脉和拦截器

    Find the vertex, the x intercepts and the y intercept of the following parabolas:
    ::查找下列参数的顶部、 x - 截面和 y - 截面:

    a) y 2 = ( x 1 ) 2
    ::a)y-2=(x-1)2

    Vertex: (1, 2)
    ::顶点:1,2)

    To find the x intercepts,
    ::为了找到X - 拦截,

    Set   y = 0 : 2 = ( x 1 ) 2 Take the square root of both sides : 2 = x 1 and 2 = x 1

    ::设置 y= 0:- 2= (x- 1) 2 以两边的平方根 :-2=x- 1 和 @ @ @% 2=x- 1

    The solutions are not real so there are no x intercepts.
    ::解决方案是不真实的,因此存在新问题。

    To find the y intercept,
    ::为了找到y - intermission,

    Set   x = 0 : y 2 = ( 1 ) 2 Simplify : y 2 = 1 y = 3 _

    ::设置 x=0:y- 2=(- 1) 2 简化: y- 2=1 @ =3_

    b) y + 8 = 2 ( x 3 ) 2
    ::b) y+8=2(x-3)2

    Rewrite : y ( 8 ) = 2 ( x 3 ) 2 Vertex : ( 3 , 8 ) _

    ::重写: y- (- 8) = 2 (x-3) 2Vertex: (3) - 8_

    To find the x intercepts,
    ::为了找到X - 拦截,

    Set   y = 0 : 8 = 2 ( x 3 ) 2 Divide both sides by   2 : 4 = ( x 3 ) 2 Take the square root of both sides : 2 = x 3 and 2 = x 3 Simplify : x = 5 _ _ and x = 1 _ _

    ::以 2 : 4 = (x-3) 2 将两边的平方根 : 2 = x-3 和 - 2 = x-3 简化: x= 5__ 和x= 1__ 。

    To find the y intercept,
    ::为了找到y - intermission,

    Set   x = 0 : y + 8 = 2 ( 3 ) 2 Simplify : y + 8 = 18 y = 10 _ _

    ::设置 x=0:y+8=2(- 3)2 简化:y+8=18_ y=10__

    To graph a parabola, we only need to know the following information:
    ::要绘制抛物线图,我们只需要知道以下信息:

    • the vertex
      ::顶部
    • the x intercepts
      ::x - 界面
    • the y intercept
      ::y - 截取
    • whether the parabola turns up or down (remember that it turns up if a > 0 and down if a < 0 )
      ::月球是上升的,还是下降的,(如果有0)和(如果有0),都是下降的。

    Graphing Parabolas 
    ::图示图

    1. Graph the parabola given by the function y + 1 = ( x + 3 ) 2 .
    ::1. 绘制函数y+1=(x+3)给出的抛物线图。

    Rewrite : y ( 1 ) = ( x ( 3 ) ) 2 Vertex : ( 3 , 1 ) _ vertex : ( 3 , 1 )

    ::重写: y- (- 1) = (x- (- 3)) 2Vertex: (- 3) 3, - 1)_ vertex: (- 3) - 1

    To find the x intercepts,
    ::为了找到X - 拦截,

    Set   y = 0 : 1 = ( x + 3 ) 2 Take the square root of both sides : 1 = x + 3 and 1 = x + 3 Simplify : x = 2 _ _ and   x = 4 _ _ x intercepts :   ( 2 , 0 )   and   ( 4 , 0 )

    ::设置 y= 0: 1 = (x+3) 2 选择两边的平方根 :1= x+3and- 1= x+3 简化: x @ @ @ @ 2_ 和 x%4_ x- 截取伤心-2,0) 和 (- 4,0)

    To find the y intercept,
    ::为了找到y - intermission,

    Set   x = 0 : y + 1 = ( 3 ) 2 Simplify: y = 8 _ _ y intercept : ( 0 , 8 )

    ::设置 x=0:y+1=(3)2 简化: y=8_ y- 截取( 0. 8)

    And since a > 0 , the parabola turns up.
    ::从零开始 抛物线出现了

    Graph all the points and connect them with a smooth curve:
    ::绘制所有点的图, 并用平滑曲线将其连接 :

    2. Graph the parabola given by the function y = 1 2 ( x 2 ) 2 .
    ::2. 绘制函数 y12(x-2) 给出的抛物线图。

    Rewrite y ( 0 ) = 1 2 ( x 2 ) 2 Vertex: ( 2 , 0 ) _ vertex: ( 2 , 0 )

    ::重写 - (0)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Vertex:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\去\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\去\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    To find the x intercepts,
    ::为了找到X - 拦截,

    Set   y = 0 : 0 = 1 2 ( x 2 ) 2 Multiply both sides by   2 : 0 = ( x 2 ) 2 Take the square root of both sides : 0 = x 2 Simplify : x = 2 _ _ x intercept: ( 2 , 0 )

    ::将 y= 0: 0\% 12 (x- 2) 2 设置为 y= 0: 0\% 12 (x- 2) 。 将两边的平方根 : 0= (x- 2) 2 选择两边的平方根 : 0=x- 2 简化: x= 2__ x- 截取 : (2, 0)

    Note: there is only one x intercept, indicating that the vertex is located at this point, (2, 0).
    ::注:只有一个 x- 界面,表示顶点位于此点(2,0) 。

    To find the y intercept,
    ::为了找到y - intermission,

    Set   x = 0 : y = 1 2 ( 2 ) 2 Simplify: y = 1 2 ( 4 ) y = 2 _ _ y intercept: ( 0 , 2 )

    ::设置 x=0: y12(- 2) 2 简化: y\\ 12(4)\ y2- y- 截取 : (0) -0- 2

    Since a < 0 , the parabola turns down.
    ::从零开始,抛物线就掉下来了

    Graph all the points and connect them with a smooth curve:
    ::绘制所有点的图, 并用平滑曲线将其连接 :

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Graph the parabola given by the function y = 4 ( x + 2 ) 2 1 .
    ::y=4( x+2)2-2-1 函数给出的参数图。

    Rewrite y ( 1 ) = 4 ( x + 2 ) 2 Simplify y + 1 = 4 ( x + 2 ) 2 Vertex: ( 2 , 1 ) _ vertex: ( 2 , 1 )

    ::重写 - (- 1) = 4( x+2) 2Simplify+1= 4( x+2) 2Vertex: (- 2) 2- 1)_ verftex: (- 2) - 1

    To find the x intercepts,
    ::为了找到X - 拦截,

    Set.   y = 0 : 0 = 4 ( x + 2 ) 2 1 Subtract 1 from each side : 1 = 4 ( x + 2 ) 2 Divide both sides by 4 : 1 4 = ( x + 2 ) 2 Take the square root of both sides : 1 2 = ± ( x + 2 ) Separate : 1 2 = ( x + 2 ) 1 2 = x + 2 ) Simplify : x = 2.5 _ _ x = 1.5 _ _

    ::设置 y= 0: 0= 4( x+2) 2 - 1 从每侧排列的 1: 1= 4( x+2) 2, 2 将两边的平方根 4: 14= ( x+2) 2 切换两侧的平方根 : 12\ ( x+2) 分隔 : 12\ ( x+2) 12= x+2 简化 : x\\\ 2.5_ x\\\\ 1.5__

    The x intercepts are ( 2.5 , 0 ) and ( 1.5 , 0 ) .
    ::x- 拦截是(-2.5,0)和(-1.5,0)。

    To find the y intercept,
    ::为了找到y - intermission,

    Set   x = 0 : y = 4 ( 0 + 2 ) 2 1 Simplify: y = 15 y = 15 _ _ y intercept: ( 0 , 15 )

    ::设置 x=0:y=4( 0+2) 2- 1 简化: y= 15_ y=15_ y- interview: (0, 15)

    Since a < 0 , the parabola turns up.
    ::从零开始 抛物线出现

    Graph all the points and connect them with a smooth curve:
    ::绘制所有点的图, 并用平滑曲线将其连接 :

    Review 
    ::回顾

    Rewrite each quadratic function in vertex form.
    ::以顶点形式重写每个二次函数 。

    1. y = x 2 6 x
      ::y=x2 - 6x
    2. y + 1 = 2 x 2 x
      ::y+1%2x2 - x
    3. y = 9 x 2 + 3 x 10
      ::y= 9x2+3x- 10
    4. y = 32 x 2 + 60 x + 10
      ::y32x2+60x+10

    For each parabola, find the vertex; the x and y intercepts; and if it turns up or down. Then graph the parabola.
    ::每个抛物线都能找到顶端; x - 和 y - intercuts; 以及如果它上升或下降。 然后绘制 parbola 。

    1. y 4 = x 2 + 8 x
      ::y - 4=x2+8x
    2. y = 4 x 2 + 20 x 24
      ::y* y4x2+20x- 24
    3. y = 3 x 2 + 15 x
      ::y= 3x2+15x
    4. y + 6 = x 2 + x
      ::y+6x2+x
    5. x 2 10 x + 25 = y + 9
      ::x2 - 10x+25=y+9
    6. x 2 + 18 x + 81 = y + 1
      ::x2+18x+81=y+1
    7. 4 x 2 12 x + 9 = y + 16
      ::4x2 - 12x+9=y+16
    8. x 2 + 14 x + 49 = y + 3
      ::x2+14x+49=y+3 x2+14x+49=y+3
    9. 4 x 2 20 x + 25 = y + 9
      ::4x2-20x+25=y+9
    10. x 2 + 8 x + 16 = y + 25
      ::x2+8x+16=y+25 x2+8x+16=y+25

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。