Section outline

  • Shifts of Square Root Functions 
    ::平根函数移位

    We will now look at how graphs are shifted up and down in the Cartesian plane .
    ::我们现在将研究如何在笛卡尔飞机上向上和向下移动图表。

    Graph the functions y = x , y = x + 2 and y = x 2 .
    ::函数=x,y=x+2andy=x-2图。

    When we add a constant to the right-hand side of the equation , the graph keeps the same shape, but shifts up for a positive constant or down for a negative one.
    ::当我们在方程式的右侧添加一个常数时, 图形保持相同的形状, 但向正常数移动或向下移动到负常数 。

    Graphing Multiple Functions 
    ::绘制多个函数

    Graph the functions y = x , y = x 2 , and y = x + 2 .
    ::函数y=x,y=x-2和y=x+2的图形。

    When we add a constant to the argument of the function (the part under the radical sign), the function shifts to the left for a positive constant and to the right for a negative constant.
    ::当我们在函数参数(激进符号下的部分)中加上一个常数时,函数向左移,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转。

    Now let’s see how to combine all of the above types of transformations .
    ::现在让我们来看看如何将上述所有类型的转变结合起来。

    Combining Transformations   
    ::组合转换

    Graph the function y = 2 3 x 1 + 2 .
    ::函数 y= 23x- 1+2 图形。

    We can think of this function as a combination of shifts and stretches of the basic square root function y = x . We know that the graph of that function looks like this:
    ::我们可以将这个函数视为基本平方根函数 y=x 的移动和拉长的组合。 我们知道该函数的图表是这样的:

    If we multiply the argument by 3 to obtain y = 3 x , this stretches the curve vertically because the value of y increases faster by a factor of 3 .
    ::如果我们将参数乘以 3 以获得 y= 3x, 则会垂直延伸曲线, 因为 y 的值增加更快, 增加系数为 3 。

    Next, when we subtract 1 from the argument to obtain y = 3 x 1 this shifts the entire graph to the left by one unit.
    ::接下来,当我们从参数中减去 1 以获取 y= 3x- 1 时, 将整张图移到左侧一个单元 。

    Multiplying the function by a factor of 2 to obtain y = 2 3 x 1 stretches the curve vertically again, because y increases faster by a factor of 2.
    ::将函数乘以 2 乘以 2 以获得 y= 23x- 1 的 y= 23x- 1 ,将曲线垂直再拉长一次,因为 y 增速快于 2 。

    Finally we add 2 to the function to obtain y = 2 3 x 1 + 2 . This shifts the entire function vertically by 2 units.
    ::最后,在获取y=23x-1+2的函数中增加2个。 这将整个函数垂直改变为 2 个单位 。

    Each step of this process is shown in the graph below. The purple line shows the final result.
    ::此过程的每个步骤都显示在下图中。紫线显示最终结果。

    Now we know how to graph square root functions without making a table of values. If we know what the basic function looks like, we can use shifts and stretches to transform the function and get to the desired result.
    ::现在我们知道如何绘制平方根函数, 而不绘制一个数值表。 如果我们知道基本函数的外观, 我们可以使用移动和伸展来转换函数, 并达到预期的结果 。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Graph the function y = x + 3 5 .
    ::函数 yx+3 - 5 的图形。

    We can think of this function as a combination of shifts and stretches of the basic square root function y = x . We know that the graph of that function looks like this:
    ::我们可以将这个函数视为基本平方根函数 y=x 的移动和拉长的组合。 我们知道该函数的图表是这样的:

    Next, when we add 3 to the argument to obtain y = x + 3 this shifts the entire graph to the right by 3 units.
    ::接下来,当我们为获取 y=x+3 在参数中添加 3 时, 将整张图向右移动 3 个单位 。

    Multiplying the function by -1 to obtain y = x + 3 which reflects the function across the x -axis.
    ::将函数乘以 -1 以获取 yx+3, 反映 X 轴的函数 。

    Finally we subtract 5 from the function to obtain y = x + 3 5 . This shifts the entire function down vertically by 5 units.
    ::最后,我们从函数中减去5,以获取 yx+3-5。这样整个函数垂直下移5个单位。

    Review 
    ::回顾

    Graph the following functions.
    ::如下图所示函数。

    1. y = 2 x 1
      ::y=2x-1
    2. y = x 100
      ::y=x-100 y=x-100
    3. y = 4 x + 4
      ::y=4x+4 y=4x+4
    4. y = 5 x
      ::y=5-x y=5-x
    5. y = 2 x + 5
      ::y=2x+5 y=2x+5
    6. y = 3 x
      ::y=3 - x y=3 - x
    7. y = 4 + 2 x
      ::y=4+2x y=4+2x
    8. y = 2 2 x + 3 + 1
      ::y=22x+3+1
    9. y = 4 + 2 x
      ::y=4+2-x y=4+2-x
    10. y = x + 1 4 x 5
      ::y=x+1 - 4x - 5

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。