章节大纲

  • Determining Asymptotes by Division 
    ::按司划分确定小数点

    In the last section we saw how to find vertical and horizontal asymptotes . Remember, the horizontal asymptote shows the value of y that the function approaches for large values of x . Let’s review the method for finding horizontal asymptotes and see how it’s related to polynomial division .
    ::在最后一节中,我们看到了如何找到垂直和水平的静态。 记住, 水平的静态显示了 y 的值, y 的函数是 x 的大值。 让我们来审查寻找水平的静态的方法, 看看它与多元分法有何关系 。

    When it comes to finding asymptotes, there are basically four different types of rational functions .
    ::在寻找微粒时,基本上有四种不同的理性功能。

    Finding Asymptotes  
    ::查找无符号( A)

    Case 1: The polynomial in the numerator has a lower degree than the polynomial in the denominator.
    ::案例1:分子中的多数值比分母中的多数值低。

    Find the horizontal asymptote of y = 2 x 1 .
    ::查找 y= 2x- 1 的水平单数 。

    We can’t reduce this fraction , and as x gets larger the denominator of the fraction gets much bigger than the numerator, so the whole fraction approaches zero.
    ::我们无法减少这个分数, 随着x的增大, 分数分母的分母会比分子大得多, 所以整个分数接近零。

    The horizontal asymptote is y = 0 .
    ::水平点为 y=0 。

    Case 2: The polynomial in the numerator has the same degree as the polynomial in the denominator.
    ::案例2:分子中的多数值与分母中的多数值具有相同的程度。

    Find the horizontal asymptote of y = 3 x + 2 x 1 .
    ::查找 y= 3x+2x- 1 的水平单数 。

    In this case we can divide the two :
    ::在这种情况下,我们可以将两者分开:

    x 1 ) 3 x + 2 ¯   3 3 x + 3 _ 5

    ::x- 113x+2 3- 3x+3_ 5

    So the expression can be written as y = 3 + 5 x 1 .
    ::因此表达式可以以 y= 3+5x- 1 写入 y= 3+5x- 1 。

    Because the denominator of the remainder is bigger than the numerator of the remainder, the remainder will approach zero for large values of x . Adding the 3 to that 0 means the whole expression will approach 3.
    ::由于剩余部分的分母大于剩余部分的分子数, X 的大值的剩余部分将接近零。 加上 3 到 0 意味着整个表达式将接近 3 。

    The horizontal asymptote is y = 3 .
    ::水平静态为 y= 3 。

    Case 3: The polynomial in the numerator has a degree that is one more than the polynomial in the denominator.
    ::案例3:分子中的多数值具有比分母中的多数值多1的学位。

    Find any asymptotes of y = 4 x 2 + 3 x + 2 x 1 .
    ::查找任何 Y= 4x2+3x+2x- 1 的 y= 4x2+3x+2x- 1 的 ymptotes 。

    Solution:
    ::解决方案 :

    We can do long division once again and rewrite the expression as y = 4 x + 7 + 9 x 1 . The fraction here approaches zero for large values of x , so the whole expression approaches 4 x + 7 .
    ::我们可以再次做长的分隔, 重写表达式为 y=4x+7+9x- 1。 这里的分数对 x 的大值接近零, 因此整个表达式接近 4x+7 。

    When the rational function approaches a straight line for large values of x , we say that the rational function has an . In this case, then, the oblique asymptote is y = 4 x + 7 .
    ::当理性函数接近 x 的大值直线时, 我们就会说, 理性函数有一个 。 在这种情况下, 斜线是 y= 4x+7 。

    Case 4: The polynomial in the numerator has a degree that is two or more than the degree in the denominator.
    ::案例4: 分子中的多数值具有两个或两个以上分母中的多数值。

    Find any asymptotes of y = x 3 x 1 .
    ::查找任何 Y=x3x- 1 的 asymptotes 。

    This is actually the simplest case of all: the polynomial has no horizontal or .
    ::这实际上是最简单的例子:多面性没有水平或 。

    Notice that a rational function will either have a horizontal asymptote, an oblique asymptote or neither kind. In other words, a function can’t have both; in fact, it can’t have more than one of either kind. On the other hand, a rational function can have any number of vertical asymptotes at the same time that it has horizontal or oblique asymptotes.
    ::注意理性函数要么具有水平性零点,要么具有倾斜性零点,要么没有同类。 换句话说,一个函数不能同时具有两种功能;事实上,它不能同时具有两种类型中的一种以上。 另一方面,一个理性函数在具有水平性或倾斜性零点的同时,也可以拥有任何数量的垂直静点。

    Examples
    ::实例

    Find the horizontal or oblique asymptotes of the following rational functions.
    ::查找以下理性函数的水平或倾斜性静态。

    Example 1
    ::例1

    y = 3 x 2 x 2 + 4
    ::y= 3x2x2+4 y= 3x2x2+4

    When we simplify the function, we get y = 3 12 x 2 + 4 . There is a horizontal asymptote at y = 3 .
    ::当我们简化函数时, 我们得到 y= 3 - 12x2+ 4。 在 y= 3 处有一个水平同位数 。

    Example 2
    ::例2

    y = x 1 3 x 2 6
    ::y=x - 13x2 - 6

    We cannot divide the two polynomials. There is a horizontal asymptote at y = 0 .
    ::我们不能将两个多边形分隔开来。 在 y=0 时, 存在着横向的空位 。

    Example 3
    ::例3

    y = x 4 + 1 x 5
    ::y=x4+1x-5

    The power of the numerator is 3 more than the power of the denominator. There are no horizontal or oblique asymptotes.
    ::分子的功率比分母的功率高3倍。 没有水平或斜度的单位数 。

    Example 4
    ::例4

    y = x 3 3 x 2 + 4 x 1 x 2 2
    ::y=x3- 3x2+4x- 1x2-2

    When we simplify the function, we get y = x 3 + 6 x 7 x 2 2 . There is an oblique asymptote at y = x 3 .
    ::当我们简化函数时, 我们得到 y=x-3+6x-7x2-2 。 在 y=x-3 上有一个斜线的单位 。

    Review 
    ::回顾

    Find all asymptotes of the following rational functions:
    ::查找以下理性函数的所有小数 :

    1. x 2 x 2
      ::x2x-2
    2. 1 x + 4
      ::1x+4 1x+4
    3. x 2 1 x 2 + 1
      ::x2 - 1x2+1
    4. x 4 x 2 9
      ::x-4x2-9
    5. x 2 + 2 x + 1 4 x 1
      ::x2+2x+14x-1
    6. x 3 + 1 4 x 1
      ::x3+14x- 1
    7. x x 3 x 2 6 x 7
      ::x- x3x2 - 6x-7
    8. x 4 2 x 8 x + 24
      ::x4-2x8x+24

    Graph the following rational functions. Indicate all asymptotes on the graph:
    ::绘制以下合理函数的图。在图形中显示所有小数点 :

    1. x 2 x + 2
      ::x2x+2
    2. x 3 1 x 2 4
      ::x3 - 1x2 - 4
    3. x 2 + 1 2 x 4
      ::x2+12x- 4
    4. x x 2 3 x + 2
      ::x- xx23x+2

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。