章节大纲

  • lesson content

    Professor Smith works in a laboratory and is training a new intern, Rakesh, in a specific task. Professor Smith tells Rakesh that when she herself did the task, she started with a very small sample of cobalt. She had 10 grams of it and took one-third of one-third of one-third of one-third of it. How can Rakesh figure out how many grams of the sample Professor Smith actually ended up using?
    ::Smith教授在实验室工作,正在培训一名新的实习生,Rakesh,从事一项具体的任务。Smith教授告诉Rakesh,当她本人完成这项任务时,她从一个很小的钴样本开始,她有10克的钴,占三分之一的三分之一。Rakesh如何知道Smith教授到底用了多少克?

    In this concept, you will learn to recognize and apply the power of a quotient property .
    ::在此概念中,您将学会承认和运用商数财产的力量。

    Power of a Quotient Property
    ::引物权

    Exponents can be applied to both fractions and quotients. For example, ( 1 2 ) ( 1 2 ) ( 1 2 ) ( 1 2 ) = ( 1 2 ) 4 . To evaluate this multiplication , find the product of the numerators and the product of the denominators.
    ::指数可以适用于分数和商数。 例如, (12) (12) (12) (12) (12) = (12) 4。 要评估此乘法, 请找到分子的产物和分母的产物 。

    1 2 1 2 1 2 1 2 = ( 1 2 ) 4 = 1 4 2 4 = 1 16

    The Power of a Quotient Property says that for any nonzero numbers a  and b  and any integer n :
    ::引号属性的功率表示,对于任何非零数a和b以及任何整数n:

    ( a b ) n = a n b n

    :伤心ab)n=anbn

    Let’s look at an example.
    ::让我们举个例子。

    Simplify: ( 5 3 ) 4 .
    ::简化伤心53)4。

    First, apply the product of a quotient property .
    ::首先,应用商数属性的产物。

    ( 5 3 ) 4 = 5 4 3 4

    Next, expand to simplify.
    ::下一步,扩展到简化。

    5 4 3 4 = 5 5 5 5 3 3 3 3 = 625 81

    The answer is 625 81 .
    ::答案是62581。

    Let’s look at another example.
    ::让我们再看看另一个例子。

    Simplify: ( 3 k 2 j ) 4 .
    ::简化( 3k2j) 4 。

    First, apply the product of a quotient property.
    ::首先,应用商数属性的产物。

    ( 3 k 2 j ) 4 = ( 3 k ) 4 ( 2 j ) 4

    :伤心3k2j)4=(3k)4(2j)4

    Next, expand to simplify.
    ::下一步,扩展到简化。

    ( 3 k ) 4 ( 2 j ) 4 = 3 4 k 4 2 2 j 4 = 3 3 3 3 k k k k 2 2 2 2 j j j j = 81 k 4 16 j 4

    :伤心3k)4(2j)4=34k422j4=3}3k422j4=3}333333kkk}k}k}k}k}k}2}2222}j}j}j}j}j}j}=81k416j4}

    The answer is 81 k 4 16 j 4 .
    ::答案是81k416j4。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  Professor Smith and the original 10 grams of cobalt.
    ::早些时候,你被问及史密斯教授 和最初的10克钴的问题。

    Rakesh needs to figure out how much of the cobalt Professor Smith actually ended up using after she took one-third of one-third of one-third of one-third of 10 grams.
    ::拉凯什需要弄清楚史密斯教授在拿了10克中三分之一的三分之一的三分之一后 究竟用了多少钴教授

    To figure out the number of grams in the sample, he must use monomials and powers.
    ::为了找出样本中的克数,他必须使用单项和单项权力。

    First, set up the problem to model the information given in the story.
    ::首先,设置问题来模拟故事中所提供的信息。

    10 × ( 1 3 ) 4

    Next, apply the product of a quotient property.
    ::其次,应用商数属性的产物。

    10 × ( 1 3 ) 4 = 10 × 1 4 3 4

    Then, expand to simplify.
    ::然后,扩展到简化。

    10 × 1 4 3 4 = 10 × 1 1 1 1 3 3 3 3 = 10 × 1 81 = 10 81

    The answer is 10 81 .
    ::答案是1081。

    Professor Smith’s sample size was 10 81  grams.
    ::Smith教授的样本规模为1081克。

    Example 2
    ::例2

    Simplify the following quotient.
    ::简化下列商数。

    ( 4 x 3 y ) 3

    :伤心-4x3y)3

    First, apply the product of a quotient property.
    ::首先,应用商数属性的产物。

    ( 4 x 3 y ) 3 = ( 4 x ) 3 ( 3 y ) 3

    :伤心-4x3y)3=(-4x3y)3(-3y)3

    Next, expand to simplify.
    ::下一步,扩展到简化。

    ( 4 x ) 3 ( 3 y ) 3 = 4 4 4 x x x 3 3 3 y y y = 64 x 3 27 y 3

    The answer is 64 x 3 27 y 3 .
    ::答案是 - 64x327y3。

    Example 3
    ::例3

    Simplify the quotient: ( 4 5 ) 3 .
    ::简化商数伤心453)

    First, apply the product of a quotient property.
    ::首先,应用商数属性的产物。

    ( 4 5 ) 3 = 4 3 5 3

    Next, expand to simplify.
    ::下一步,扩展到简化。

    4 3 5 3 = 4 4 4 5 5 5 = 64 125

    The answer is 64 125 .
    ::答案是64125。

    Example 4
    ::例4

    Simplify the quotient: ( 2 a 3 b ) 2 .
    ::简化商数 : (2a3b) 2。

    First, apply the product of a quotient property.
    ::首先,应用商数属性的产物。

    ( 2 a 3 b ) 2 = 2 2 a 2 3 2 b 2

    :伤心2a3b)2=22a232b2

    Next, expand to simplify.
    ::下一步,扩展到简化。

    2 a 2 3 2 b 2 = 2 2 a a 3 3 b b = 4 a 2 9 b 2

    The answer is 4 a 2 9 b 2 .
    ::答案是4a29b2。

    Example 5
    ::例5

    Simplify the quotient: ( a 5 b ) 3 .
    ::简化商数伤心a5b) 3。

    First, apply the product of a quotient property.
    ::首先,应用商数属性的产物。

    ( a 5 b ) 3 = a 3 5 3 b 3

    :伤心a5b)3=a353b3

    Next, expand to simplify.
    ::下一步,扩展到简化。

    a 3 5 3 b 3 = a a a 5 5 5 b b b = a 3 125 b 3

    ::a353b3=aaaa55_5_5}bb=a3125b3=a3125b3

    The answer is a 3 125 b 3 .
    ::答案是a3125b3。

    Review
    ::回顾

    Simplify.
    ::简化。

    1. ( 2 3 ) 4
    2. ( 1 3 ) 3
    3. ( 7 8 ) 2
    4. ( 2 5 ) 4
    5. ( 7 k 2 m ) 3
      :伤心7k-2m)3
    6. ( 3 x 2 y ) 3
      :伤心3x-2y)3
    7. ( 4 x 3 y ) 4
      :伤心4x-3y)4
    8. ( 5 y 2 z ) 5
      :伤心5y-2z)5
    9. ( 2 y 4 z ) 4
      :伤心-2y4z)4
    10. ( 4 x y 2 z 5 ) 5
      :伤心4xy-2z5)5
    11. ( 12 x 2 y 4 6 z 3 ) 2
      :伤心12x2y4-6z3)2
    12. ( 7 x 2 y 2 z 3 ) 3
      :伤心7x2y-2z3)3
    13. ( 2 x 3 y 2 2 z 3 ) 3
      :伤心2x3y2-2z3)3
    14. ( x 11 y 9 ) 5
      :伤心x119)5
    15. ( 5 x 3 3 h 2 j 8 ) 5
      :伤心-5x33h2j8)5

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。