章节大纲

  • What if you were given two in polar form , such as 2 ( cos π 2 + i sin π 2 ) , 7 ( cos 3 π 2 + i sin 3 π 2 ) and asked to multiply them? Would you be able to do this? How long would it take you?
    ::如果给您两个极形的, 例如 2 (cos2+isin2) 、 7 (cos32+isin32) , 并请求您增加它们数量呢 ? 您能够这样做吗 ? 您需要多长时间 ?

    Product Theorem 
    ::产品定理

    Multiplication of complex numbers in polar form is similar to the multiplication of complex numbers in standard form. However, to determine a general rule for multiplication, the trigonometric functions will be simplified by applying the sum/difference identities for cosine and sine. To obtain a general rule for the multiplication of complex numbers in polar from, let the first number be r 1 ( cos θ 1 + i sin θ 1 ) and the second number be r 2 ( cos θ 2 + i sin θ 2 ) . The product can then be simplified by use of three facts: the definition i 2 = 1 , the sum identity cos α cos β sin α sin β = cos ( α + β ) , and the sum identity sin α cos β + cos α sin β = sin ( α + β ) .
    ::以极态表示的复杂数字的乘法与标准格式的复杂数字的乘法相似。 但是,为了确定乘法的一般规则,三角函数将通过对正弦和正弦应用总和/差异特性来简化。 为了获得关于极地复杂数字乘法的乘法的一般规则,第一个数字为r1(cos1+isin1),第二个数字为r2(cos2+isin2)。 然后,产品可以通过使用三个事实来简化: i21 定义、 总和身份 oscossinsincos(), 和总和身份 sincosçsinsin()。

    Now that the numbers have been designated, proceed with the multiplication of these binomials.
    ::现在数字已经指定, 开始这些二进制的乘法。

    r 1 ( cos θ 1 + i sin θ 1 ) r 2 ( cos θ 2 + i sin θ 2 ) r 1 r 2 ( cos θ 1 cos θ 2 + i cos θ 1 sin θ 2 + i sin θ 1 cos θ 2 + i 2 sin θ 1 sin θ 2 ) r 1 r 2 [ ( cos θ 1 cos θ 2 sin θ 1 sin θ 2 ) + i ( sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) ] r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ]

    ::r2(cos2+cos2+cos2+cos2+ocos1sin}2+isin1cos2+i2+i2sin2+i2+sin1sin}2r1r2[(cos1cos2+sin1sin}2+sin1sin}2)+i(sin1cos}2+cos%2+cos%1sin2+cos%1sin2+r1r1r2[cos2+sin}+isin1}2

    Therefore:
    ::因此:

    r 1 ( cos θ 1 + i sin θ 1 ) r 2 ( cos θ 2 + i sin θ 2 ) = r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ]

    ::r1 (cos1+isin1) r2(cos2+isin2) =r1r2 [cos12] +isin12]

    Use this general formula for the product of complex numbers to perform computations.
    ::对复杂数字的产物使用此通用公式进行计算。

    1. Find the product of complex numbers by using the Product Theorem
    ::1. 通过使用产品理论来查找复杂数字的产物

    Find the product of 3.61 ( cos 56.3 + i sin 56.3 ) and 1.41 ( cos 315 + i sin 315 )
    ::查找3.61(cos56.3isin56.3)和1.41(cos315315315)的产物。

    Use the Product Theorem, r 1 ( cos θ 1 + i sin θ 1 ) r 2 ( cos θ 2 + i sin θ 2 ) = r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ] .
    ::使用产品理论,r1(cos1+isin1) r2(cos2+isin2) =r1r2[cos12] +isin1]。

    3.61 ( cos 56.3 + i sin 56.3 ) 1.41 ( cos 315 + i sin 315 ) = ( 3.61 ) ( 1.41 ) [ cos ( 56.3 + 315 ) + i sin ( 56.3 + 315 ) = 5.09 ( cos 371.3 + i sin 371.3 ) = 5.09 ( cos 11.3 + i sin 11.3 )

    ::3.61(cos56.3 56.3 56.3 )1.41(cos315 315 315 ) =(3.61) (1.41) [cos(56.3 315 ) +isin(56.3 315 ) =5.09(cos371.3 371.3 ) = 5.09(cos11.3 11.3 3 11.3 )

    Note: Angles are expressed 0 θ 360 unless otherwise stated.
    ::* 注:除另有说明外,括号为 0360。

    2. Find the product of 5 ( cos 3 π 4 + i sin 3 π 4 ) 3 ( cos π 2 + i sin π 2 )
    ::2. 查找5(cos34+isin34)3(cos2+isin2)的产物

    First, calculate r 1 r 2 = 5 3 = 5 3 and θ = θ 1 + θ 2 = 3 π 4 + π 2 = 5 π 4
    ::首先,计算 r1r2= 53= 53 和12= 342= 54

    5 3 ( cos 5 π 4 + i sin 5 π 4 )

    ::53(cos54+isin54)

    3. Find the product of the numbers r 1 = 1 + i and r 2 = 3 i by first converting them to trigonometric form .
    ::3. 将数字r1=1+i和r2=3-i的产物首先转换成三角形,然后查找其产物。

    First, convert 1 + i to polar form:
    ::首先,将 1+i 转换为极形 :

    r 1 = 1 2 + 1 2 = 2 θ 1 = arctan 1 1 = π 4

    ::r1=12+12=21=arctan114

    And now do the same with 3 i :
    ::现在对 3 -i 也做同样的事情:

    r 2 = 3 2 + ( 1 ) 2 = 2 θ 2 = arctan 1 3 = π 6

    ::r2=32+(- 1)2=22=arctan-136

    And now substituting these values into the product theorem:
    ::现在用这些价值来取代产品定理:

    r 1 × r 2 = ( 2 ) ( 2 ) ( cos ( π 6 + π 4 ) + i sin ( π 6 + π 4 ) ) ( 2 ) ( 2 ) ( cos ( π 12 ) + i sin ( π 12 ) )

    ::1×r2=(2)(2)(2)(cos) (64)+isin(64)(2)(2)(cos(12)+isin(12)))

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to multiply two complex numbers in polar form. 
    ::早些时候,你被要求 乘以两个复杂的数字 以极形的形式。

    Since you want to multiply
    ::既然您想要乘数

    2 ( cos π 2 + i sin π 2 ) , 7 ( cos 3 π 2 + i sin 3 π 2 )
    ::2(cos2+isin2),7(cos32+isin32)

    where r 1 = 2 , r 2 = 7 , θ 1 = π 2 , θ 2 = 3 π 2 ,
    ::r1=2,r2=7,12,2=32,r2=7,r2=7,r2=7,r2=7,r12,r2=3,r2=2,r2=2,r2=2,r2=2,r2=2,r2=2,r2=7,r2=2,r2=2,r2=2,r2=2,r2=7,r2=2,r2=2,r2=2,r2=2,r2=3

    you can use the equation
    ::您可以使用方程

    r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ]
    ::r1r2[cos(12)+isin(12)

    and calculate:
    ::计算 :

    ( 2 ) ( 7 ) [ cos ( π 2 + 3 π 2 ) + i sin ( π 2 + 3 π 2 ) ]
    :伤心2) [cos(2+32)+isin(2+32)]

    This simplifies to:
    ::这简化为:

    14 [ cos ( 2 π ) + i sin ( 2 π ) ] = 14 [ 1 + i 0 ] = 14

    ::14[14[1+i0]=14]

    Example 2
    ::例2

    Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
    ::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。

    2 56 , 7 113

    2 56 , 7 113 = ( 2 ) ( 7 ) ( 56 + 113 ) = 14 169

    Example 3
    ::例3

    Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
    ::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。

    3 ( cos π + i sin π ) , 10 ( cos 5 π 3 + i sin 5 π 3 )
    :伤心cosisin,10(cos53+isin53)

    3 ( cos π + i sin π ) , 10 ( cos 5 π 3 + i sin 5 π 3 ) = ( 3 ) ( 10 ) c i s ( π + 5 π 3 ) = 30 c i s 8 π 3 = 30 c i s 2 π 3
    ::3(cosisin),10(cos53+isin53) =(3)(10)cis(53) =30cis83=30cis23

    Example 4
    ::例4

    Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
    ::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。

    2 + 3 i , 5 + 11 i
    ::2+3i,-5+11i

      2 + 3 i , 5 + 11 i   change to polar

    x = 2 , y = 3 x = 5 , y = 11 r = 2 2 + 3 2 = 13 3.61 r = ( 5 ) 2 + 11 2 = 146 12.08 tan θ = 3 2 θ = 56.31 tan θ = 11 5 θ = 114.44
    ( 3.61 ) ( 12.08 ) ( 56.31 + 114.44 ) = 43.61 170.75

    ::2+3i,-5+11i 改为极地轴=2,y=3x5,y=11r=22+32=133.61r=(-55)2+112=146}12.08tan3256.311115114.44(3.61)(12.08)(56.31114.44)=43.61170.75

    Review
    ::回顾

    Multiply each pair of complex numbers. If they are not in trigonometric form, change them before multiplying.
    ::乘以每对复杂数字。 如果它们不是三角形的, 则在乘法前更改它们 。

    1. 3 ( cos 32 + i sin 32 ) 2 ( cos 15 + i sin 15 )
      ::3⁄4 ̄ ̧漯B
    2. 2 ( cos 10 + i sin 10 ) 10 ( cos 12 + i sin 12 )
      :伤心cos101010101010121212)
    3. 4 ( cos 45 + i sin 45 ) 8 ( cos 62 + i sin 62 )
      ::4 (cos454545) 8 (cos626262)
    4. 2 ( cos 60 + i sin 60 ) 1 2 ( cos 34 + i sin 34 )
      ::12(cos343434)
    5. 5 ( cos 25 + i sin 25 ) 2 ( cos 115 + i sin 115 )
      ::5 (cos252525) (2(cos115115115))
    6. 3 ( cos 70 + i sin 70 ) 3 ( cos 85 + i sin 85 )
      ::-3 -3(cos707070) -3(cos858585)
    7. 7 ( cos 85 + i sin 85 ) 2 ( cos 40 + i sin 40 )
      ::7(cos8585) 2(cos404040)
    8. ( 3 2 i ) ( 1 + i )
      :伤心3-2(i)_________(1+1)
    9. ( 1 i ) ( 1 + i )
      :伤心1-一) (1+1)
    10. ( 4 i ) ( 3 + 2 i )
      :伤心4-一) (3+2i)
    11. ( 1 + i ) ( 1 + 4 i )
      :伤心1+一)__________________________________(1+1+4i)
    12. ( 2 + 2 i ) ( 3 + i )
      :伤心2+2i)(3+i)
    13. ( 1 3 i ) ( 2 + i )
      :伤心1-3i)(2+i)
    14. ( 1 i ) ( 1 i )
      :伤心1-一)_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(1_______________________________________(1______________________________(1________________________________________________________________________________________________________________________________________________________
    15. Can you multiply a pair of complex numbers in standard form without converting to trigonometric form?
      ::您能否在不转换成三角形的情况下,以标准格式乘乘一对复杂数字?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。