乘数和分裂的广场根
Section outline
-
The area of a rectangle is and the length of the rectangle is . What is the width of the rectangle?
::矩形区域为 30 , 矩形的长度为 20 。 矩形的宽度是 多少 ?Dividing Square Roots
::分裂的广场根Division of radicals can be a bit more difficult than performing other operations . The main complication is that you cannot leave any radicals in the denominator of a fraction . For this reason we have to do something called rationalizing the denominator , where you multiply the top and bottom of a fraction by the same radical that is in the denominator. This will cancel out the radicals and leave a whole number.
::激进分子的分裂可能比执行其他操作要困难一些。 主要的复杂因素是不能将任何激进分子留在分数分母的分母中。 出于这个原因,我们必须做一个叫做分母合理化的事情, 也就是把分母的上下乘以分母中的同一个分母。 这将取消激进分子, 留下一个完整的数字 。Multiplying and Dividing Radicals
::乘数和分裂的激进组织Remember the following properties:
::记住下列属性:and
::ab=ab和abb=abbSimplify the following by rationalizing the denominator.
::使分母合理化,简化以下内容。Break apart the radical by using Rule #4.
::使用规则4打破激进。Simplify the following by rationalizing the denominator.
::使分母合理化,简化以下内容。This might look simplified, but radicals cannot be in the denominator of a fraction. This means we need to apply Rule #5 to get rid of the radical in the denominator, or rationalize the denominator . Multiply the top and bottom of the fraction by .
::这也许看起来很简化,但激进不能成为分母的分母。 这意味着我们需要应用规则5来消除分母中的激进,或者理顺分母。 将分母的顶部和底部乘以 3 。Simplify the following by rationalizing the denominator.
::使分母合理化,简化以下内容。Reduce the fraction, and then apply the rules above.
::减少分数,然后适用上述规则。Examples
::实例Example 1
::例1Earlier, you were asked to find the width of the rectangle.
::早些时候,有人要求你找到矩形的宽度。Recall that the area of a rectangle equals the length times the width, so to find the width, we must divide the area by the length.
::回顾矩形区域等于宽度的长度倍数,为了找到宽度,我们必须将区域除以长度。= .
Now we need to rationalize the denominator. Multiply the top and bottom of the fraction by .
::现在我们需要使分母合理化。 乘以分数的顶部和底部乘以 2 。Therefore , the width of the rectangle is .
::因此,矩形宽度为62。Example 2
::例2Simplify the expression using the Radical Rules you have learned.
::使用您所学的激进规则来简化表达式 。Example 3
::例3Simplify the expression using the Radical Rules you have learned.
::使用您所学的激进规则来简化表达式 。Example 4
::例4Simplify the expression using the Radical Rules you have learned.
::使用您所学的激进规则来简化表达式 。The only thing we can do is rationalize the denominator by multiplying the numerator and denominator by and then simplify the fraction.
::我们唯一能做的就是通过将分子和分母乘以6来使分母合理化,然后简化分母。Review
::回顾Simplify the following fractions.
::简化以下分数 。Challenge Use all the Radical Rules you have learned to simplify the expressions.
::挑战 使用你学到的所有激进规则 简化表达方式Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。