Section outline

  • According to Newton's second law, the net force (F) of an object is equal to its mass (m) times its acceleration (a), where F is measured in Newtons, m is measured in kilograms, and a is measured in meters/sec/sec. If an object with an acceleration of 8 meters/sec/sec has a force of 24 Newtons, what is the object's force when its acceleration is 12 meters/sec/sec?
    ::根据牛顿的第二项法律,一个物体的净功率(F)等于其质量(m)乘以加速度(a),在牛顿测量F,米以公斤计量,米/秒/秒/秒测量。如果加速度为8米/秒/秒/秒的物体有24牛顿的功率,当加速度为12米/秒/秒时,物体的功力是什么?

    Direct Variation
    ::直接变化

    We say that a set of data is related directly if the independent and dependent variables both grow large or small together. For example, the equation of the line y = 2 x would represent a direct variation relationship. As x gets bigger, so would y . In fact, direct variation equation is y = k x , k 0 , which looks just like the equation of a line without a y - intercept . We call k the constant of variation and y is said to vary directly with x . k can also be written k = y x .
    ::我们说,如果独立变量和依附变量同时变大或变小,一组数据是直接相关的。例如,y=2x的等式将代表一种直接的变异关系。当x变大时,y=2x的等式也会是直接的。事实上,直接变异等式是y=kx,k0,它看起来就像没有y-intercept的线的等式。我们称之为 k 变量的常数, y 据说与 x. k 可以写为 k=yx 。

    The variables x and y vary directly, and y = 10 when x = 2 . Let's write an equation that relates x and y and find y when x = 9 .
    ::变量 x 和 y 直接变化, y= 10 当 x= 2 时, y= 10 。 让我们写一个与 x 和 y 相关的方程式, 然后在 x= 9 时找到 y 。

    Using the direct variation equation, we can substitute in x and y and solve for k .
    ::使用直接变异方程式, 我们可以替换 x 和 y , 并解决 k 。

    y = k x 10 = k ( 2 ) 5 = k

    ::y=kx10=k(2)5=k

    Therefore , the equation is y = 5 x . To find y when x is 9, we have y = 5 9 = 45 .
    ::因此,方程式是y=5x。在 x 9 时查找y,我们有y=5=9=45。

    Now, let's determine if the following set of data varies directly. If so, let's find the direct variation equation.
    ::现在,让我们来决定下一组数据是否直接变化。 如果是的话,让我们找到直接变化方程式。

    x 4 8 16 20
    y 1 2 4 5

    Looking at the set of data, the x values increase. For the data to vary directly, the y values would also have to increase, and they do. To find the equation, use the first point and find k .
    ::查看数据集时, x 值会增加。要直接改变数据,y 值也会增加,而y 值也会增加。要找到方程,请使用第一点并找到 k。

    y = k x 1 = k ( 4 ) 1 4 = k

    ::y=kx1=k(4)14=k

    So, the equation for the first point is y = 1 4 x . Plug each point into the equation to make sure it works.
    ::所以,第一个点的方程是y=14x。 将每个点插到方程中, 以确保它有效 。

    2 = 1 4 ( 8 ) 4 = 1 4 ( 16 ) 5 = 1 4 ( 20 )

    The number of calories, C , a person burns working out varies directly with length of time it was done, t (in minutes). A 150 pound person can burn 207 calories swimming laps for 30 minutes. Let's write a variation model for C as a function of t . Then, let's determine how long it will take that person to burn 520 calories.
    ::热量、 C、 一个人的烧伤数量随时间长短而异, t (以分钟计) 150磅的人可以烧207卡路里游泳圈30分钟。让我们写C的变异模型作为 t的函数。 然后,让我们来决定这个人烧掉520卡路里需要多长时间。

    Plug in what you know to the direct variation model and solve for k .
    ::插入您所知道的 直接变异模型和 K 的解答 。

    C = k t 207 = k ( 30 ) The model for a   150 -pound person is   C = 6.9 t . 6.9 = k

    ::C=kt207=k(30) 150磅人的模型为C=6.9t.6.9=k

    To find how long it will take to this person to burn 520 calories, solve for t .
    ::找到这个人烧掉520卡路里 要花多长时间 解决 t

    520 = 6.9 t It will take   75.4   minutes to burn   520   calories . 75.4 = t

    ::520=6.9t 燃烧520卡路里需要75.4分钟。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the object's force when its acceleration is 12 meters/sec/sec.
    ::早些时候,当物体加速度为12米/秒/秒时,你被要求寻找物体的力量。

    If we write Newton's second law as an equation, we get F = m a . We can now see that this is an example of a direct variation equation, where y = F , m = k , and a = x . Using the direct variation equation, we can substitute in F and a and solve for m .
    ::如果我们把牛顿的第二定律写成一个方程, 我们就会得到F=ma。 我们现在可以看到这是一个直接变异方程的例子, 即 y=F, m=k, 和 a=x。 使用直接变异方程, 我们可以用 F 和 a 来替代 m 。

    F = m a 24 = m ( 8 ) 3 = m

    ::F=ma24=m( 8)3=m

    So the mass of the object is 3 kg but we're looking for its force when its acceleration is 12 meters/sec/sec. Hence, we use the formula again.
    ::所以天体的质量是3公斤 但是当天体加速度是12米/秒/秒时 我们在找它的力量

    F = m a F = ( 3 ) ( 12 ) F = 36

    ::F=maF=(3)(12)F=36

    Therefore, the object's force is 36 Newtons.
    ::因此,物体的力量是36牛顿。

    Example 2
    ::例2

    The variables  x and y vary directly, and y = 6  when x = 8 . Find the equation and determine x when y = 12 .
    ::变量 x 和 y 直接变化, 当 x\\ 8 时为 y 6 。 查找方程并确定 x y= 12 时为 y= 。

    First, solve for k .
    ::首先,解决k。

    k = y x = 6 8 = 3 4 y = 3 4 x
    ::kyx=6- 8=34_y=34x

    Now, substitute in 12 for y and solve for x .
    ::现在,以 y 12 取代 y , 用 x 解析 。

    12 = 3 4 x 4 3 12 = x 16 = x

    ::12=34x43=12=x16=x

    Example 3
    ::例3

    Determine if the set below varies directly.
    ::确定下一组是否直接变化。

    x 1 2 3 4 5
    y 2 4 8 16 20

    At first glance, it looks like both values increase together. Let’s check to see if k is the same for each set of points.
    ::乍一看,它看起来两种数值都同时增长。让我们来看看 k 是否对每组点都相同。

    k = y x = 2 1 = 4 2 8 3
    ::kyx=21=4283

    At this point, we can stop because the point ( 3 , 8 ) does not have the same ratio as the first two points. Therefore, this set of data does not vary directly.
    ::在这一点上,我们可以停止,因为点(3,8)与前两点的比率不同,因此,这组数据没有直接变化。

    Example 4
    ::例4

    Taylor’s income varies directly with the number of hours he works. If he worked 60 hours last week and made $900, how much does he make per hour? Set up a direct variation equation.
    ::泰勒的收入与其工作时数直接不同。 如果他上周工作了60小时,赚了900美元,他每小时能挣多少? 设置一个直接的变数方程式。

    We want to find Taylor’s hourly wage, which is the constant of variation.
    ::我们想找到泰勒的小时工资,

    k = 900 60 = 15 , he makes $15/hour. The equation would be y = 15 x .
    ::k=90060=15, 他每小时赚15美元。 公式是y=15x。

    Review
    ::回顾

    For problems 1-4, use the given x and y values to write a direct variation equation and find y given that x = 12 .
    ::对于问题1-4, 使用给定的 x 和 Y 值来写入直接变异方程式, 并查找 y, 给定的 x 和 Y 值 x= 12 。

    1. x = 3 , y = 15
      ::x=3,y=15x3,y=15
    2. x = 9 , y = 3
      ::x=9,y3
    3. x = 1 2 , y = 1 3
      ::x=12,y=13 x=13
    4. x = 8 , y = 4 3
      ::x8,y=43

    For problems 5-8, use the given x and y values to write a direct variation equation and find x given that y = 2 .
    ::对于问题 5-8, 使用给定的 x 和 y 值来写入直接变异方程, 并找到 x, 并给定的 y= 2 。

    1. x = 5 , y = 4
      ::x=5,y=4x=5,y=4
    2. x = 18 , y = 3
      ::x=18,y=3xx=18,y=3
    3. x = 7 , y = 28
      ::x=7,y28
    4. x = 2 3 , y = 5 6
      ::x=23,y=56

    Determine if the following data sets vary directly.
    ::确定以下数据集是否直接变化。

    1. .
    x 12 16 5 20
    y 3 4 1 5
    1. .
    x 2 10 5 6
    y 14 70 35 42
    1. .
    x 2 8 18 34
    y 3 12 27 51

    Solve the following word problems using a direct variation equation.
    ::使用直接变异方程式解决以下字词问题 。

    1. Based on her weight and pace, Kate burns 586 calories when she runs 5 miles. How many calories will she burn if she runs only 3 miles? How many miles (to the nearest mile) does she need to run each week if she wants to burn one pound (3500 calories) of body fat each week?
      ::根据体重和速度,凯特在跑5英里时烧了586卡路里。如果她只跑3英里,她会烧多少卡路里?如果她想每星期烧一磅(3500卡路里)体重,她每周需要跑多少英里(距离最近的里程)?
    2. One a road trip, Mark and Bill cover 450 miles in 8 hours, including stops. If they maintain the same pace, how far (to the nearest mile) will they be from their starting point after 15 hours of driving?
      ::Mark和Bill在8小时中覆盖450英里的路程,包括中途站。 如果他们保持同样的速度,在15小时的驾驶后,他们离起点(离最近的里程)还要多远?
    3. About three hours into a fundraising car wash, the Mathletes Club earned $240 washing 48 cars. How much was charged for each carwash? How many more cars will they have to wash to reach their goal of earning $400?
      ::在大约三个小时的筹款洗车中,数学俱乐部赚了240美元洗48辆车。 每洗1辆洗车要收多少钱?还要洗多少车才能达到挣400美元的目标?
    4. Dorothy earned $900 last week for working 36 hours. What is her hourly wage? If she works full time (40 hours) in a week how much will she make?
      ::Dorothy上周工作36小时挣了900美元,小时工资是多少?如果她一周内全时工作(40小时),她能挣多少钱?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。