Section outline

  • Trig Riddle: I am a point. My are ( 2 , 330 ) . What are my Cartesian coordinates?
    ::Trig Riddle:我是一个点。我是2,330。我的笛卡尔座标是什么?

    Convert Polar Coordinates to Cartesian Coordinates
    ::将极坐标转换为笛卡尔坐标

    Let's look at  how to convert Polar coordinates to Cartesian coordinates. This is, essentially, the reverse of the process used  to convert Cartesian coordinates to Polar coordinates.
    ::让我们来看看如何将极地坐标转换为笛卡尔坐标。这基本上是把笛卡尔坐标转换为极地坐标的过程的反方向。

    Given the point ( 6 , 120 ) , let's find the equivalent Cartesian coordinates.
    ::根据点数(6,120),让我们找到等同的笛卡尔坐标。

    First, consider the diagram below and the right triangle formed by a perpendicular segment to the x -axis and hypotenuse equal to the radius. We can find the legs of the right triangle using and thus the x and y coordinates of the point.
    ::首先, 请考虑下图和右三角形, 右三角形由直角段组成, 与 X 轴和下角等值, 等于半径。 我们可以使用右三角形的腿, 从而找到点的 x 和 y 坐标 。

    From the diagram we can see that the reference angle is 60 . Now we can use right triangle trigonometry to find x and y . In this particular case, we can also use special right triangle ratios or the unit circle .
    ::从图表中我们可以看到参考角度是 60 。 现在我们可以使用右三角三角三角测量来找到 x 和 y。 在此特定情况下, 我们也可以使用特殊右三角比或单位圆 。

    cos 60 = x 6     sin 60 = y 6 x = 6 cos 60 = 6 ( 1 2 ) = 3 a n d     y = 6 cos 60 = 6 ( 3 2 ) = 3 3

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么?

    Since the point is in the second quadrant, the x value should be negative giving the Cartesian coordinates ( 3 , 3 3 ) .
    ::由于点位于第二个象限, x 值应为负值,显示笛卡尔坐标(-3,33)。

    Recall that every point on the unit circle was ( cos θ , sin θ ) , where θ represented the angle of rotation from the positive x axis and the radius (distance from the origin) was 1. In these problems, our radius varies as we are no longer restricted to the unit circle. In the previous problem , observe that the coordinates ( x , y ) are essentially ( 6 cos 60 , 6 sin 60 ) where 6 was the radius and 60 was the reference angle. We could have used the angle of rotation, 120 , and the only difference would be that the cosine ratio would be negative which would automatically make the x coordinate negative. We can generalize this into a rule for converting from Polar coordinates to Cartesian coordinates:
    ::回顾单位圆的每个点是(cos,sin), 代表正x轴的旋转角度,半径(与原点的距离)为1. 在这些问题上,我们的半径因我们不再局限于单位圆而有所不同。 在前一个问题上, 注意坐标( x,y) 基本上( x, y) 6 =半径, 6 =半径, 60 = 6 = 参考角度。 我们本可以使用旋转角度, 120 =, 唯一的区别是, 共弦比为负, 这会自动使x坐标为负。 我们可以将这一规则概括为从极坐标转换为笛切斯坐标的规则 :

    ( r , θ ) = ( r cos θ , r sin θ )

    :sadr,)=(rcos,rsin)

    Now, given the point, ( 10 , 220 ) , let's find the Cartesian coordinates.
    ::现在,考虑到这一点, (10, -220), 让我们找到笛卡尔座标。

    Using the rule with r = 10 and θ = 220 and the calculator:
    ::使用 r= 10 和 220 和计算器的规则 :

    ( 10 cos ( 220 ) , 10 sin ( 220 ) ) = ( 7.66 , 6.43 )

    :sad10cos(-220),10sin(-220)=(-7.66,6.43)

    Finally, given the point, ( 9 , 11 π 6 ) , let's find the exact value of the Cartesian coordinates.
    ::最后,鉴于这一点,(9,11,6),让我们找出笛卡尔座标的确切价值。

    This time r = 9 and θ = 11 π 6 . So, ( 9 cos 11 π 6 , 9 sin 11 π 6 ) = ( 9 ( 3 2 ) , 9 ( 1 2 ) ) = ( 9 3 2 , 9 2 ) .
    ::这一次 r=9 和 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\92\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -92\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\92\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\92。。\\\\\\\\\\\\\\\\\\\92。。\\

    First, draw a diagram. From this diagram we can see that the reference angle is 30 . Now we can use right triangle trigonometry to find x and y . In this particular case, we can also use special right triangle ratios or the unit circle.
    ::首先, 绘制图表。 从这个图表中, 我们可以看到引用角度是 30\\\\\\ 30\\\ 。 现在我们可以使用右三角三角三角测量来查找 x 和 y。 在此特定情况下, 我们也可以使用特殊的右三角比或单位圆 。

    cos 30 = x 2     sin 30 = y 2 x = 2 cos 30 = 2 ( 3 2 ) = 3 a n d     y = 2 sin 30 = 2 ( 1 2 ) = 1

    ::30x2 sin 30Y2x=2cos 30302(32) 3和y=2sin}3022(12)=1

    Since the point is in the fourth quadrant, the y value should be negative giving the Cartesian coordinates ( 3 , 1 ) .
    ::由于点在第四象限,Y值应为负值,表示笛卡尔坐标(3,-1)。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the Cartesian coordinates for a point whose Polar coordinates are  ( 2 , 330 ) .
    ::早些时候,有人要求你找到笛卡尔座标,以找到极地座标(2 330)所在的点。

    First draw a diagram. From the diagram we can see that the reference angle is 30 . Now we can use right triangle trigonometry to find x and y . In this particular case, we can also use special right triangle ratios or the unit circle.
    ::首先绘制图表。 从图表中我们可以看到参考角度是 30\\\\\\\\\\\\\ n现在我们可以使用右三角三角三角测量来找到 x和 y。 在此特定情况下, 我们也可以使用特殊的右三角三角比或单位圆 。

    cos 30 = x 2     sin 30 = y 2 x = 2 cos 30 = 2 ( 3 2 ) = 3 a n d     y = 2 cos 30 = 2 ( 1 2 ) = 1

    ::30x2 sin 30Y2x=2cos 30302(32) 3和y=2cos 302(12)=1

    Since the point is in the fourth quadrant, the y value should be negative giving the Cartesian coordinates ( 3 , 1 ) .
    ::由于点在第四象限,Y值应为负值,表示笛卡尔坐标(3,-1)。

    Example 2
    ::例2

    Use your calculator to find the Cartesian coordinates equivalent to the Polar coordinates ( 11 , 157 ) .
    ::使用计算器找到与极地坐标(11,157)相等的笛卡尔坐标(11,157)。

    ( 11 cos 157 , 11 sin 157 ) ( 10.13 , 4.30 )
    :sad11cos157,11sin157)(-1013.4.30)

    Example 3
    ::例3

    Find the exact value of the Cartesian coordinates equivalent to the Polar coordinates ( 8 , 45 ) .
    ::找到相当于极地坐标(8,45)的笛卡尔座标的准确值。

    ( 8 cos 45 , 8 sin 45 ) = ( 8 ( 2 2 ) , 8 ( 2 2 ) ) = ( 4 2 , 4 2 )
    :sad8cos45,8sin45) =(8(22),8(22) =(42,42)

    Example 4
    ::例4

    Find the exact value of the Cartesian coordinates equivalent to the Polar coordinates ( 5 , π 2 ) .
    ::找到相当于极地坐标(5,2)的笛卡尔座标的准确值。

    ( 5 cos ( π 2 ) , 5 sin ( π 2 ) ) = ( 5 ( 0 ) , 5 ( 1 ) ) = ( 0 , 5 )
    :sad5cos(2),5sin(2)) =(5(0),5(-1) =(0),5(-5) =(0)

    Review
    ::回顾

    Use your calculator to find the Cartesian coordinates equivalent to the following Polar coordinates. Give your answers rounded to the nearest hundredth.
    ::使用您的计算器找到与以下极坐标相等的笛卡尔座标。 将答案四舍五入到最接近的一百位 。

    1. ( 13 , 38 )
    2. ( 25 , 230 )
    3. ( 17 , 345 )
    4. ( 2 , 140 )
    5. ( 7 , 2 π 5 )
    6. ( 9 , 2.98 )
    7. ( 3 , 5.87 )
    8. ( 10 , 13 π 7 )

    Find the exact value Cartesian coordinates equivalent to the following Polar coordinates.
    ::找到与以下极地坐标相等的笛卡尔座标的准确值 。

    1. ( 5 , π 3 )
    2. ( 6 , π 4 )
    3. ( 12 , 5 π 6 )
    4. ( 7 , π )
    5. ( 11 , 2 π )
    6. ( 14 , 4 π 3 )
    7. ( 27 , 3 π 4 )
    8. ( 40 , 5 π 6 )

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。