Sine 和 Cosine 函数期间的变化
章节大纲
-
Your mission, should you choose to accept it, as Agent Trigonometry is to find the period of the cosine function .
::您的任务, 如果您选择接受它, 因为代理 Trigonology 是要找到连接函数 y= cos[%( 2x+4)] 的时间段 。Period
::期间The last thing that we can manipulate on the curve is the period .
::在曲线上我们能操纵的最后一件事 就是时间The normal period of a sine or cosine curve is . To stretch out the curve, then the period would have to be longer than . Below we have sine curves with a period of and then the second has a period of .
::正弦或余弦曲线的正常时间段为 2。 要拉开曲线, 时间段必须大于 2 。 在下方, 中间曲线为 4 , 而第二个曲线为 __ 。To determine the period from an equation, we introduce into the general equation. So, the equations are and , where is the , is the frequency , is the phase shift , and is the vertical shift . The frequency is the number of times the sine or cosine curve repeats within . Therefore, the frequency and the period are indirectly related. For the first sine curve, there is half of a sine curve in . Therefore the equation would be . The second sine curve has two curves within , making the equation . To find the period of any sine or cosine function, use , where is the frequency. Using the first graph above, this is a valid formula: .
::为了确定方程的周期, 我们将 b 引入一般方程 。 因此, 方程是 y=asinb( x- h)+k 和 y=acosb( x- h)+k, 其中, a 是 , b 是 频率, h 是 相位变化, k 是 垂直变化 。 频率是 正弦或正弦曲线在 2 ° 内的重复次数。 因此, 频率和周期是间接相关的。 对于第一个正弦曲线, 在 2 ° 中有一个正弦曲线的 一半。 因此, 等式是 y= sin\ 12x 。 第二个正弦曲线在 2 ° 内有两个曲线, 使 y = six 。 要找到正弦或正弦函数的期间, 请使用 2 b , 其中 b 是 的频率 。 因此, 使用上面的第一个图形, 这是有效的公式 : 2: 12= 22 = = 4\ 。Let's determine the period of the following sine and cosine functions.
::我们来决定下个正弦和连弦函数的周期。-
::y3cos=6x y3cos=6x y3cos=6x
The 6 in the equation tells us that there are 6 repetitions within . So, the period is .
::等式中的6告诉我们,2内重复了6次。所以,这一时期是263。-
::y=2sin=14x
The in the equation tells us the frequency. The period is .
::方程式中的 14 表示频率。 周期是 2 14 = 2 4 = 8 。-
::y=sin_x-7 y=sin_x-7
The is the frequency. The period is .
::频率为 __ 。 周期为 2 __ 2 。Now, let's graph from , determine where the maximum and minimum values occur, and state the domain and range.
::现在,让我们从 [ 0, 2] 绘制 y3cos6x, 确定最大值和最小值的发生地点, 并指定域和范围 。The amplitude is -3, so it will be stretched and flipped. The period is (from above) and the curve should repeat itself 6 times from 0 to . The first maximum value is 3 and occurs at half the period, or and then repeats at Writing this as a formula we start at and add to get the next maximum, so each point would be where is any integer.
::振幅为 - 3, 将会被拉伸和翻转。 时段为 +3 (以上) , 曲线应该从 0 到 2 重复 6 倍 。 第一个最大值为 3 , 半个 , 或 x + 6 , 然后在 x 2, 5 5 6 7 6 6 3+2 重复... 将此写成一个公式, 我们从 _ 6 开始, 并添加 3 3 以获得下一个最大值, 所以每个点都是 n 是整数 的 6 6 3 。The minimums occur at -3 and the -values are multiples of . The points would be , again is any integer. The domain is all real numbers and the range is .
::最小值在 - 3 时为 - 3, x 值是 3 的倍数。 点数是 (3n, -3) , n 也是 任何整数。 域是所有实际数字, 范围是 y { 3, 3) 。Finally, let's find all the solutions from the function from .
::最后,让我们从 y=2sin14x 函数 [0,2] 中找到所有解决方案 。Now that the period can be different, we can have a different number of zeros within . In this case, we will have 6 times the number of zeros that the parent function. To solve this function, set and solve for .
::现在时间可以不同, 我们可以在 [ 0, 2] 内有不同的零数。 在这种情况下, 我们的零数将是父函数的零数的六倍。 要解析此函数, 请设置 y=0 和 x 的解析 。
::03cos=6x0=cos=6xxNow, use the inverse cosine function to determine when the cosine is zero. This occurs at the multiples of .
::现在,使用反余弦函数来确定余弦为零的时间。这发生在% 2 的倍数上。
::6x=cos-102,32,52,52,72,72,92,112,112,132,152,172,172,192,212,232We went much past because when we divide by 6, to get by itself, all of these answers are going to also be divided by 6 and smaller.
::我们过去很多年了,因为当我们除以6来获得x本身时,所有这些答案也将除以6和较小。
::12, 4, 5, 5, 12, 3, 4, 11, 12, 13, 12, 5, 4, 17, 12, 19, 12, 212, 23, 12so we have found all the zeros in the range.
::2312<2 ┮и祇瞷┮Τ零Examples
::实例Example 1
::例1Earlier, you were asked to find the period of .
::早些时候,有人要求你找到y=cos[(2x+4)]的时期。First, we need to get the function in the form . Therefore we need to factor out the 2.
::首先,我们需要以 y=acosb(x-h)+k 的形式获得函数。 因此,我们需要将 2 考虑在内。
::y=cos[( 2x+4)]y=cos[2x( x+2)]The is the frequency. The period is therefore .
::频率是 2。 因此时间段是 221 。Example 2
::例2Determine the period of the function .
::确定函数 y= 23cos = = 34x 的周期 。The period is .
::报告期为2-34=2_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Example 3
::例3Find the zeros of the function from Example 2 from .
::从例2中 [0,2] 查找函数的零。The zeros would be when is zero.
::零是y为0时的零。
::0=23cos34x0=cos34x34x=cos-102,32x43(2,32)x=23,23Example 4
::例4Determine the equation of the sine function with an amplitude of -3 and a period of .
::确定正弦函数的方程式,其振幅为 -3,期间为 8 。The general equation of a sine curve is . We know that and that the period is . Let’s use this to find the frequency, or .
::正弦曲线的一般方程式是 y=asinbx。 我们知道 a3 和 时间段是 8。 让我们用这个来查找频率, 或者 b 。
::2b=828b14=bThe equation of the curve is .
::曲线的方程是 y3sin14x。Review
::回顾Find the period of the following sine and cosine functions.
::查找下列正弦和余弦函数的期间。-
::y=5sin=3x y=5sin=3x -
::y2cos=4x y2cos=4x y2cos=4x -
::y======================================================================================================================================= -
::y=cos=34x y=cos=34x -
::y=12cos=2.5x y=12cos=2.5x -
::y=4sin=3x y=4sin=3x
Use the equation to answer the following questions.
::使用 y=5sin3x 等式回答下列问题。-
Graph the function from
and find the domain and range.
::从 [0,2] 绘制函数图,并找到域和范围。 -
Determine the coordinates of the maximum and minimum values.
::确定最大值和最低值的坐标。 -
Find all the zeros from
.
::查找 [0,2] 的所有零。
Use the equation to answer the following questions.
::使用 y=cos%34x 等式回答下列问题。-
Graph the function from
and find the domain and range.
::从 [0,4] 绘制函数图,并找到域和范围。 -
Determine the coordinates of the maximum and minimum values.
::确定最大值和最低值的坐标。 -
Find all the zeros from
.
::查找 [0,2] 的所有零。
Use the equation to answer the following questions.
::使用 y3sin2x 等式回答下列问题。-
Graph the function from
and find the domain and range.
::从 [0,2] 绘制函数图,并找到域和范围。 -
Determine the coordinates of the maximum and minimum values.
::确定最大值和最低值的坐标。 -
Find all the zeros from
.
::查找 [0,2] 的所有零。 -
What is the domain of every sine and cosine function? Can you make a general rule for the range? If so, state it.
::每个正弦和余弦函数的域是什么? 您能否为范围制定一条通则? 如果是, 请声明 。
Write the equation of the sine function, in the form , with the given amplitude and period.
::写入正弦函数的方程式, 以 y=asinbx 形式写入, 并写入给定的振幅和时段 。-
Amplitude: -2 Period:
::振幅: -2 周期: 3×4 -
Amplitude:
Period:
::振幅:35 -
Amplitude: 9 Period: 6
::振幅: 9 周期: 6 -
Challenge
Find all the zeros from
of
.
::挑战从 y = 12sin 3 (x) 3 [0,2] 中查找全部零。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -