章节大纲

  • Finding the limit of a rational function is actually much less complex than it may seem, in fact many of the limits you have already evaluated have been rational functions.
    ::找到理性功能的极限实际上比看起来要复杂得多,事实上,你已经评估的许多界限是理性功能。

    In this lesson, you will gain more experience working with rational function limits, and will use another theorem which simplifies the process of finding the limit of some rational functions.
    ::在这个教训中,你将获得更多关于合理功能限制的经验,并将使用另一个理论来简化寻找某种合理功能限制的过程。

    Rational Function Limits
    ::逻辑函数限制

    Sometimes finding the limit of a rational function at a point a is difficult because evaluating the function at the point a leads to a denominator equal to zero. The box below describes finding the limit of a rational function.
    ::有时很难在某个点上找到合理函数的极限,因为对点上的函数进行评价会导致分母等于零。下面的框说明找到合理函数的极限。

    Theorem: The Limit of a Rational Function
    For the rational function f ( x ) = p ( x ) q ( x ) and any real number a ,
    lim x a f ( x ) = p ( a ) q ( a )  if  q ( a ) 0 .
    However, if q ( a ) = 0 then the function may or may not have any outputs that exist.

    Examples
    ::实例

    Example 1
    ::例1

    Find lim x 3 2 x x 2 .
    ::寻找 limx32 -xx-2 。

    Using the theorem above, we simply substitute x = 3: lim x 3 2 x x 2 = 2 3 3 2 = 1
    ::使用上面的定理, 我们只需替换 x = 3: limx- 32-xx-2= 2- 33-21

    Example 2
    ::例2

    Find lim x 3 x + 1 x 3 .
    ::查找 limx%3x+1x- 3 。

    Notice that the domain of the function is continuous (defined) at all real numbers except at x = 3. If we check the we see that lim x 3 + x + 1 x 3 = and lim x 3 x + 1 x 3 = . Because the one-sided limits are not equal, the limit does not exist .
    ::请注意,函数的域除x = 3. 外,所有实际数字都是连续的(定义的),如果我们检查我们是否看到 limx3+x+1x-3 和 limx3-x+1x-3 和 limx3-x+1x-3 。由于单向限制不相等,因此该限制并不存在。

    Example 3
    ::例3

    Find lim x 2 x 2 4 x 2 .
    ::查找 limx% 2x2 - 4x- 2 。

    Notice that the function here is discontinuous at x = 2, that is, the denominator is zero at x = 2. However, it is possible to remove this discontinuity by canceling the factor x - 2 from both the numerator and the denominator and then taking the limit:
    ::注意此函数在 x = 2 时不连续, 也就是说, 分母在 x = 2 时为 0 = 2. 但是, 可以通过从分子和分母中取消乘数 x - 2 来消除这种不连续性, 然后选择限制 :

      lim x 2 x 2 4 x 2 = lim x 2 ( x 2 ) ( x + 2 ) x 2 = lim x 2 ( x + 2 ) = 4

    This is a common technique used to find the limits of rational functions that are discontinuous at some points. When finding the limit of a rational function, always check to see if the function can be simplified.
    ::这是一种常见的方法,用来找到理性功能的极限,而理性功能在某些时点是不连续的。 当找到理性功能的极限时,总是要检查是否可以简化功能。

    Example 4
    ::例4

    Find lim x 3 2 x 6 x 2 + x 12 .
    ::查找 limx% 32x- 6x2+x- 12 。

    The numerator and the denominator are both equal to zero at x = 3, but there is a common factor x - 3 that can be removed (that is, we can simplify the rational function):
    ::分子和分母在 x = 3 时均等于零,但有一个共同系数 x - 3 可以删除(即我们可以简化理性功能):

      lim x 3 2 x 6 x 2 + x 12 = lim x 3 2 ( x 3 ) ( x + 4 ) ( x 3 )
        = lim x 3 2 x + 4
        = 2 7

    Example 5
    ::例5

    Find lim x 1 5 x 2 + x + 4 x 1 .
    ::查找 limx% 1 - 5x2+x+4x- 1 。

    ( 5 x 4 ) ( x 1 ) ( x 1 ) ..... Start by factoring the numerator
    :伤心-5x-4) (x-1) (x- 1) (x- 1) ....。从乘数开始

    Since we have (x - 1) in both numerator and denominator, we know that the original function is equal to just 5 x 4 except where it is undefined (1).
    ::由于我们在分子和分母两方面都有(x-1),我们知道原始功能等于仅仅-5x-4,除非未定义(1)。

    Therefore the closer we get to inputing 1, the closer we get to the same value, whether from the + or - side.
    ::因此,我们越接近输入1, 我们就越接近相同的价值, 无论是从+或-侧。

    To find the value, just solve 5 x 4 for x = 1 .
    ::要找到值, 只需解析 x=1 的 5x- 4 。

    lim x 1 5 x 2 + x + 4 x 1 = 5 1 4 9
    ::*%x%1 - 5x2+x+4x - 1*5*1 - 4*9

    Example 6
    ::例6

    Find lim x 2 x 2 + 2 x + 8 x + 2 .
    ::查找limx% 2 - x2+2x+8x+2。

    ( x + 4 ) ( x + 2 ) ( x + 2 ) ..... Start by factoring the numerator
    :伤心- x+4) (x+2) (x+2) (x+2) ....。从乘数开始

    Since we have (x + 2) in both numerator and denominator, we know that the original function is equal to just x + 4 except where it is undefined (-2).
    ::由于我们在分子和分母两方面都有(x+2),我们知道原始函数等于只-x+4,除非未定义(-2)。

    Therefore the closer we get to substituting -2, the closer we get to the same output value, whether from the + or - side.
    ::因此,我们越接近于取代 -2, 我们就越接近于相同的产出值, 无论是从+ 或- 侧。

    To find the value, just solve x + 4 for x = 2 .
    ::要找到值, 只需解析 x% 2 的 ~ x+4 。

    lim x 2 x 2 + 2 x + 8 x + 2 = ( 2 ) + 4 6
    ::2 -x2+2x+8x+2(-2)+46

    Review
    ::回顾

    Solve the following rational function limits.
    ::解决以下合理功能限制。

    1. lim x 1 12 x 2 + 12 4 x 4
      ::limx=1 - 12x2+124x- 4
    2. lim x 2 3 x + 3 11 9 2 x 4
      ::立方厘米23x+3-1192x-4
    3. lim x 57 56 5 x 3 2 x + 3 13 6 56 x 57
      ::5756-55x-32x+3-136-56x-57
    4. lim x 2 2 x 2 5 x + 2 x + 2
      ::limx% 22x2 - 5x+2 - x+2
    5. lim x 3 4 4 x 2 + 5 x 6 4 x 3
      ::立方厘米x344x2+5x-64x-3
    6. lim x 4 3 2 x + 3 3 5 6 x 24
      ::立方厘米4 - 3 - 2x+3 - 356x-24
    7. lim x 3 2 4 x 3 2 x + 2 5 2 2 x 3
      ::32 - 4x - 3 - 2x+2 - 52 - 2x - 3
    8. lim x 4 x 2 8 x + 16 x 4
      ::limx=4x2-8x+16x-4
    9. lim x 10 39 3 x + 3 3 x + 4 7 6 39 x 10
      ::10393x+3-3-3x+4-7639x-10
    10. lim x 4 3 x 2 + 7 x 20 x 4
      ::43x2+7x-20-x-4
    11. lim x 4 4 x 2 + 14 x 8 x + 4
      ::limx44x2+14x-8x+4
    12. lim x 18 13 4 x + 1 3 x + 5 5 7 13 x 18
      ::1813-4x+1-3x+5-5-57-57-13x-18
    13. lim x 2 3 x + 4 3 2 3 x 6
      ::立方 23x+4-32-3x-6
    14. lim x 3 4 x + 3 4 x + 3 11 2 4 x 3
      ::立方公尺xxxxx34x+3-112-4x-3
    15. lim x 1 4 8 x 2 2 x + 1 4 x + 1
      ::立方公尺x14-8x2-2x+1-4x+1
    16. lim x 1 4 16 x 2 16 x + 3 4 x + 1
      ::立方厘米1416x2 - 16x+3 - 4x+1
    17. lim x 0 x 2 + 3 x x
      ::limx=0x2+3xxx

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

     

    Resources
    ::资源