Section outline

  • Assume you have an unfair coin that is weighted to land on heads 65% of the time. If you flip that coin 3 times and let  T represent the number of tails you get, what is the probability distribution for T ?
    ::假设你有一个不公平的硬币, 它在65%的时间里被加权在头顶上。 如果你翻了3次硬币,让T代表尾巴的数量,那么T的概率分布是多少?

    Look to the end of the lesson for the answer.
    ::寻找教训的结尾 以找到答案。

    Probability Distribution
    ::概率分布

    A probability distribution is a list of each value a random variable can attain, along with the probability of attaining each value. In other words, the probability distribution of an event is sort of a map of how each possible outcome relates to the chance it will happen.
    ::概率分布是随机变量可以达到的每个值的列表,以及达到每个值的概率。换句话说,事件概率分布是每个可能的结果与它发生的机会之间关联的地图。

    lesson content

    For instance, the probability distribution of flipping a coin twice is:
    ::例如,翻硬币两次的概率分布是:

    heads, heads = 25%, heads, tails = 25%, tails, heads = 25%, and tails, tails = 25%.
    ::头部=25%,头部=25%,尾部=25%,尾部=25%,尾部=25%,尾部=25%。

    If we define the random variable  X to be the number of heads you get when you flip a coin twice, we could create the following probability distribution table for X
    ::如果我们将随机变量 X 定义为您翻硬币两次时获得的头数, 我们可以为 X 创建以下概率分布表 :

    X 0

    1

    2

    P ( X )

    1 4

    1 2

    1 4

    There are various ways of visualizing a probability distribution, and we will review that concept in another lesson. For now, we focus on identifying what a probability distribution is, and how to calculate it for a particular event.
    ::概率分布有多种可视化的方法,我们将在另一个教训中审视这一概念。 目前,我们的重点是确定概率分布是什么,以及如何计算特定事件的概率分布。

    Creating Probability Distributions 
    ::创建概率分布

    1. In Chi’s class, 4 students have one parent, 7 have two parents, and 1 student lives with his uncle. Let  P be the number of parents of a randomly selected student from the class. Create a probability distribution for P .
    ::1. 在Chi班中,有4名学生有一个父母,7名学生有两个父母,1名学生与其叔叔住在一起。

    Set random variable  P to be the number of parents:
    ::设定随机变量P为父母数 :

    P ( P ) = %   p r o b a b i l i t y   t h a t   a   s t u d e n t   h a s   P   p a r e n t s


    ::P(P) 学生父母为P(P) 的概率

    Now find the probability of each   P , noting that there are 12 students total:
    ::现在找到每个P的概率, 指出共有12名学生:

    1 student has 0 parents:  P ( 0 ) = 1 12   o r   8.3 ¯ 3 % 4 students have 1 parent:  P ( 1 ) = 4 12   o r   33.3 ¯ 3 % 7 students have 2 parents:  P ( 2 ) = 7 12   o r   58.3 ¯ 3 %


    ::1名学生父母为0:P(0)=112或8.3:3% 4名学生父母为1:P(1)=412或33.3:3% 7名学生父母为2:P(2)=712或58.3:3%

    2. Roll two fair six-sided dice. Let  D equal the sum of the dice. Create a probability distribution for D .
    ::2. 滚动两个公平的六面骰子。让 D 等于骰子的总和。为 D 创建概率分布 。

    Make a list of the individual probabilities of each of the 36 possible outcomes :
    ::列出36项可能结果中每项结果的个别概率:

    1 possibility with a sum of 2:  P ( D = 2 ) = 1 36 = 0.0278 2 possibilities with a sum of 3:  P ( D = 3 ) = 2 36 = 0.0556 3 possibilities with a sum of 4:  P ( D = 4 ) = 3 36 = 0.0833 4 possibilities with a sum of 5:  P ( D = 5 ) = 4 36 = 0.1111 5 possibilities with a sum of 6:  P ( D = 6 ) = 5 36 = 0.1389 6 possibilities with a sum of 7:  P ( D = 7 ) = 6 36 = 0.1667 5 possibilities with a sum of 8:  P ( D = 8 ) = 5 36 = 0.1389 4 possibilities with a sum of 9:  P ( D = 9 ) = 4 36 = 0.1111 3 possibilities with a sum of 10:  P ( D = 10 ) = 3 36 = 0.0833 2 possibilities with a sum of 11:  P ( D = 11 ) = 2 36 = 0.0556 1 possibility with a sum of 12:  P ( D = 12 ) = 1 36 = 0.0278


    ::1种可能性,总和2P(D=2)=136=0.2782可能性,总和3:P(D=3)=236=0.05563可能性,总和3:P(D=4)=336=0.08334可能性,总和5:P(D=4)=336=0.08334可能性,总和5:P(D=5)=436=436=0.8334可能性,总和6:P(D=6)=536=5136=0.13896可能性,总和7:P(D=7)=636=0.16675可能性,总和8:P(D=8)=536=0.13894可能性,总和9:P(D=9)=436=0.11113可能性,总和:P(D=10)=336=0.08332可能性,总和11:P(D=11)=236=236=0.05561可能性,总和:P(D=12)=136=0.0278

    Evaluating Probabilities 
    ::评价概率

    Janie wants to evaluate the probabilities of pulling various cards from a deck. She sets the discrete random variable C to be the number of diamonds she gets over the course of three trials, if each trial consists of pulling, recording, and replacing one random card from a standard deck. What is the probability distribution of C ?
    ::Janie想评估从甲板上拉出各种牌的概率。 她设置了离散随机变量C, 即三次试金刚石的数量, 如果每次试金刚石包括从标准牌上拉、 记录和替换一张随机卡。 C的概率分布是什么?

    To evaluate the probability distribution of C , Janie needs to identify the probability of each of the possible values of C . Note that the chance she will pull a diamond is  13 52 or 0.25 , meaning that the chance she will not pull a diamond is 1 0.25 = 0.75 :

    ::为了评估C的概率分布,Janie需要确定C每种可能价值的概率。 注意,她拉钻石的机会是1352或0.25,这意味着她不拉钻石的机会是1-0.25=0.75:

    • For C = ( 0 ) ,  the total probability is: 0.42  or 42 %    
      • Other, other, other: 0.75 × 0.75 × 0.75 = 0.42   
        ::其他,其他,其他: 0.75x0.75x0.75=0.42

      ::对于C=(0),总概率是:0.42或42% 其他,其他,其他:0.75×0.75×0.75=0.42。
    • For   C = ( 1 ) , the total probability is:   0.14 + 0.14 + 0.14 = 0.42   o r   42 % (see the three possible outcomes resulting in  C = 1 below)
      • Diamond, other, other :   0.25 × 0.75 × 0.75 = 0.14
        ::钻石,其他,其他:0.25×0.75×0.75=0.14
      • Other, Diamond, other :   0.75 × 0.25 × 0.75 = .14
        ::其他,钻石,其他:0.75x0.25x0.75=14。
      • Other, other, Diamond :   0.75 × 0.75 × 0.25 = 0.14
        ::其他,其他,钻石:0.75×0.75×0.0.25=0.14

      ::C=(1)的总概率是:0.14+0.14+0.14+0.14=0.42或42%(见下文C=1的三种可能结果)。 钻石,其他,其他:0.25×0.75×0.75=0.14。 其他,钻石,其他:0.75×0.25×0.75=0.14。 其他,其他,钻石:0.75×0.75×0.25=0.14。
    • For   C = ( 2 ) , the total probability is:   0.047 + 0.047 + 0.047 = 0.141   o r   14.1 %  
      • Diamond, Diamond, other :   0.25 × 0.25 × 0.75 = 0.047
        ::钻石、钻石、其他:0.25×0.25×0.75=0.047
      • Diamond, other, Diamond :  0.25 × 0.75 × 0.25 = 0.047
        ::钻石,其他,钻石:0.25×0.75×0.25=0.047
      • Other, Diamond, Diamond :   0.75 × 0.25 × 0.25 = 0.047
        ::其他,钻石,钻石:0.75×0.25×0.25=0.047

      ::C=(2)的总概率是:0.047+0.047+0.047+0.047=0.141或14.1%钻石、钻石、其他:0.25×0.25×0.75=0.047钻石、其他:0.25×0.75×0.75=0.047钻石、其他:0.25×0.75×0.25=0.047其他、钻石、钻石:0.75×0.25×0.25=0.047
    • For   C = ( 3 ) , the probability is :   0.25 × 0.25 × 0.25 = 0.016   o r   1.6 %  
      • Diamond, Diamond, Diamond:   0.25 × 0.25 × 0.25 = 0.016
        ::钻石、钻石、钻石:0.25×0.25×0.25=0.016

      ::C=(3)的概率为:0.25×0.25×0.25=0.016或1.6% 钻石、钻石、钻石:0.25×0.25×0.25=0.016

    Earlier Problem Revisited
    ::重审先前的问题

    Assume you have an unfair coin that is weighted to land on heads 65% of the time. If you flip that coin 3 times and let  T represent the number of tails you get, what is the probability distribution for T ?
    ::假设你有一个不公平的硬币, 它在65%的时间里被加权在头顶上。 如果你翻了3次硬币,让T代表尾巴的数量,那么T的概率分布是多少?

    If each throw has a 65% chance of heads, then it has a 35% chance of tails:
    ::如果每次抛球都有65%头的机率, 那么它有35%尾巴的机率:

    • For   T = 1 , we could have THH, HTH, or HHT. Each of those has a   .35 × .65 × .65 = .15  chance of occurring, so P ( T = 1 ) = .15 × 3 = .45   o r   45 %
      ::T=1 1时,我们可以有THH、HTH或HHT。 每一个有35x. 65x. 65=15的发生概率, 所以P( T=1)=15x3=45或45%
    • For   T = 2 , we could have TTH, THT, or HTH. Each has a   .35 × .35 × .65 = .08  chance, so P ( T = 2 ) = .08 × 3 = .24   o r   24 %
      ::T=2 T=2, 我们可以拥有TTTT、TTTT或HTTH。 每个人都有35x35x65=0. 08的机会, 所以P(T=2)=. 08x3=24 或24%
    • For   T = 3 , we could have only TTT, with a chance of   .35 × .35 × .35 = .043   o r   4.3 %  
      ::T=3, T=3, 我们只能有TTT, 概率为35×35×35=0. 043或4.3%

    Examples 
    ::实例

    Example 1
    ::例1

    Create a probability distribution for number of heads when you flip a coin 3 times.
    ::当翻硬币三次时, 为头数创建概率分布 。

    Write out all the possibilities:
    ::写出所有的可能性:

    TTT has 0 heads. TTH has 1 heads. THT has 1 heads. THH has 2 heads. HTT has 1 heads. HTH has 2 heads. HHT has 2 heads. HHH has 3 heads.


    ::TTT有0个头。TT有1个头。TT有1个头。TH有2个头。HTT有1个头。HT有2个头。HHT有2个头。HHH有3个头。

    So we have 1 possibility with 0 heads: P ( 0 ) = 1 8 = 0.125 3 possibilities with 1 heads: P ( 1 ) = 3 8 = 0.375 3 possibilities with 2 heads: P ( 2 ) = 3 8 = 0.375 1 possibility with 3 heads: P ( 3 ) = 1 8 = 0.125


    ::因此,我们有一个可能:头0:P(0)=18=0.1253;头1:P(1)=38=0.3753;头2:P(2)=38=0.3751;头3:P(3)=18=0.125。

    Example 2
    ::例2

    Let  C  be the number of cholate chip cookies you get if you randomly pull and replace two cookies from a jar containing 6 chocolate chip, 4 peanut butter, 8 snickerdoodle, and 12 sugar cookies. Create a probability distribution for  C .
    ::让C成为巧克力曲奇饼的数量, 如果你随机抽取和替换两个曲奇饼, 从一个罐子里含有 6 个巧克力曲奇饼, 4 个花生酱, 8 个饼干, 8 个饼干, 12个糖饼干。 创建 C 的概率分布 。

    There are a total of 30 cookies, the probability of pulling a chocolate chip cookie is   6 30 = .20 , so the probability of not pulling a chocolate chip is   24 30 = .80
    ::总共有30个饼干,拉巧克力曲奇的概率是630=20, 所以不拉巧克力曲奇的概率是2430=80。

    • For  C = 0 we have to pull a non-chocolate chip both times:  .8 × .8 = .64   o r   64 %
      ::对于 C=0, 我们必须两次拉出一个非巧克力芯片: 0. 8×.8=. 64 或 64%
    • For  C = 1 we could either pull the chocolate chip cookie first or second, so we get ( .2 × .8 ) + ( .8 × .2 ) = .32   o r   32 %
      ::对于 C=1, 我们可以首先或第二次拉巧克力曲奇饼干, 所以我们得到( 2x.8) +( 8x.2) = 32 或 32%
    • For  C = 2 we have to pull chocolate chip both times, so we have  .2 × .2 = .04   o r   4 %
      ::C=2的C=2 我们两次都要拉巧克力芯片 所以有2×2=0.04或4%

    Example 3
    ::例3

    Let  S  be the score of a single student chosen at random from Mr. Spence's class. Create a probability distribution for  S , given the following: 
    ::S 是 Spence 先生的班级随机选择的单个学生的分数。 创建 S 的概率分布, 如下 :

    Number of Students
    ::学生人数

    Test

    ::测试测试测试

    11

    87

    7

    89

    13

    92

    9

    94

    6

    96

    There are a total of 46 students in Mr. Spence’s class, so there are 46 scores. The probability of a random student having score  S is the same as that score’s portion of the total number of scores:
    ::Spence先生的班级共有46名学生,因此有46人得分。 随机学生得S分的概率与得分总数中得分的比例相同:

    • P ( S = 87 ) = 11 46
      ::P(S=87)=1146
    • P ( S = 89 ) = 7 46
      ::P(S=89)=746
    • P ( S = 94 ) = 9 46
      ::P(S=94)=946
    • P ( S = 96 ) = 6 46
      ::P(S=96)=646

    Review 
    ::回顾

    1. What is a probability distribution?
    ::1. 什么是概率分布?

    2. What is a random variable?
    ::2. 什么是随机变数?

    3. What is the difference between a discrete and a continuous random variable?
    ::3. 离散变量和连续随机变量之间有什么区别?

    For problems 4-7, refer to the following table:
    ::关于4-7问题,请见下表:

    S

    2

    3

    4

    5

    6

    7

    8

    9

    10

    P ( S )

    .04

     

    .12

    .16

     

    .16

    .12

     

    .04

    4. Assuming the table is a probability distribution for discrete random variable   S , which is the sum of two dice rolled once, how many sides does each die have?
    ::4. 假设表格是离散随机变量S的概率分布,即两个骰子滚动一次之和,则每个死亡方有多少?

    5. What is   P ( 3 ) ?
    ::5. 什么是P(3)?

    6. What is   P ( 6 ) ?
    ::6. P(6)是什么?

    7. What is   P ( 9 ) ?
    ::7. 什么是P(9)?

    8. Roll two seven-sided dice once. Let  S be the sum of the two dice. Create a probability distribution for S .
    ::8. 将两张七面骰子放一次。S是两张骰子的总和。为 S 设定一个概率分布 。

    9. Flip a fair coin 3 times, let  H be the number of heads. Create a probability distribution for H .
    ::9. 将一个公平的硬币翻转3次,由H作为头数。

    10. Let  S be the sum of two standard fair dice. Create a probability distribution for S , if the experiment consists of a single roll of both dice.
    ::10. 如果实验由两张骰子的单卷组成,那么S就是两个标准公平骰子的总和。为S创造概率分布。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。