参数反函数
Section outline
-
You have learned that a graph and its inverse are reflections of each other across the line You have also learned that in order to find an inverse algebraically, you can switch the and variables and solve for actually make finding inverses easier because both the and variables are based on a third variable All you need to do to find the inverse of a set of parametric equations and switch the functions for and
Is the inverse of a function always a function?
::函数的反向总是函数吗 ?Inverses of Parametric Equations
::参数等量的逆数To find the inverse of a parametric equation you must switch the function of with the function of This will switch all the points from to and also has the effect of visually reflecting the graph over the line
::要找到参数方程的反向, 您必须用 y 函数切换 x 的函数。 这将将所有点从 (x,y) 切换到 (y, x) , 并具有在 y =x 线上直观反映图形的效果 。Similar to the inverses regular functions, the inverses of parametric equations are often restricted so that they are also functions. Take the following parametric equations:
::与正常函数的反向相似,参数方程的反向往往受到限制,因此它们也是函数。
::x=2ty=t2-4To find and graph the inverse of the parametric function on the domain , first switch the and functions and graph.
::要查找和绘制域-2<t<2, 域上的参数函数的反向, 请先切换 x 和 y 函数和图形 。
::x=t2 - 4y=2tThe original function is shown in blue and the inverse is shown in red.
::原函数以蓝色显示,反面以红色显示。Examples
::实例Example 1
::例1Earlier, you were asked if the inverse of a function is always a function. The inverse of a function is not always a function. In order to see whether the inverse of a function will be a function, you must perform the horizontal line test on the original function. If the function passes the horizontal line test then the inverse will be a function. If the function does not pass the horizontal line test then the inverse produces a relation rather than a function.
::早些时候,有人询问函数的反向是否总是函数。函数的反向并不总是函数。为了查看函数的反向是否是一个函数,您必须在原始函数上进行水平线测试。如果函数通过水平线测试,则反向将是一个函数。如果函数没有通过水平线测试,则反向产生关系而不是函数。Example 2
::例2Is the point (4, 8) in the following function or its inverse?
::以下函数中的点(4,8)是反数还是反数?
::x=2t2--2y=t2-2-1Try to solve for a matching in the original function.
::尝试为原始函数中的匹配 t 解析 。
::x=2t2-2 -2
::4=2吨2-2-2
::6=2吨2
::3=t2 3=t2
::3=t
::y=t2-1
::8=t2-1
::9=吨2
::3=tThe point does not satisfy the original function. Check to see if it satisfies the inverse.
::点不能满足原始函数。检查是否满足反向功能。
::x=t2-2-1
::4=t2-1
::5=t
::y= y2t2-2-2
::8=2吨2-2-2
::10=2吨2
::5=tThe point does satisfy the inverse of the function.
::点能满足函数的反向。Example 3
::例3Parameterize the following function and then graph the function and its inverse.
::参数化以下函数,然后图形化函数及其反向。
:xx)=x2+x-4)
For the original function, the parameterization is:
::对于原始函数,参数化是:
::x=ty=t2+t-4xxy=t2+t-4The inverse is:
::反之:
::x=t2+t-4y=tExample 4
::例4An intersection for two sets of parametric equations happens when the points exist at the same and Find the points of intersection of the function and its inverse from Example 2.
::两组参数方程式的交叉路段发生于点位于相同的 x、y 和 t。 从例2中查找函数的交叉点及其反向。The parameterized function is:
::参数化函数为:
::x1=ty1=t2+t-4The inverse is:
::反之:
::x2=t2+t-4y2=tTo find where these intersect, set and and solve.
::要找到这些交叉点, 请设置 x1=x2 和 y1=y2 并解析 。
::t = t2+t- 4t2=4t2You still need to actually calculate the points of intersection on the graph. You can tell from the graph in Example C that there seem to be four points of intersection. Since can mean time, the question of intersection is more complicated than simply overlapping. It means that the points are at the same and coordinate at the same time. Note what the graphs look like when
::您仍需要实际计算图形上的交叉点。 您可以从例C中的图表中看到, 似乎有四个交叉点。 由于 t 代表时间, 交叉点的问题比简单的重叠复杂。 这意味着点在相同的 x 和 y 坐标的同时。 注意当 - 1. 8 < 1. 8 时这些图形的外观 。Note what the graphs look like or
::注意图表看起来像 t>2.2 或 t2.2 。Notice how when these partial graphs are examined there is no intersection at anything besides and the points (2, 2) and (-2, -2) While the paths of the graphs intersect in four places, they intersect at the same time only twice.
::注意检查这些部分图表时,除了 t2 和点(2, 2) 和点(2, 2) 和点(2, 2) 外,没有任何地方没有交叉点。 虽然这些图形的路径在四个地方交叉,但同时交叉只两次。Example 5
::例5Identify where the following parametric function intersects with its inverse.
::确定下列参数函数与其反向相交之处。
::x=4tx=4吨
::y=t2-16The inverse is:
::x1=4t; y1=t2- 16 逆数为:
::x2=t2 - 16y2=4tSolve for when and
::当 x1=x2 和 y1=y2 时解决 t 。
::4t=t2-160=t2-4t-16t=416-41(-16)2=4452=225The points that correspond to these two times are:
::与这两次相对应的要点是:
::x=4(2+25)、y=(2+25)、y=(2+25)、y=16x=4(2 - 25)、y=(2 - 25)、y=16Summary -
To find the inverse of a parametric equation, simply switch the functions for
and
::要找到参数方程的反向,只需切换 x 和 y 的函数。 -
Inverses of parametric equations are often restricted so that they are also functions.
::参数方程式的逆向往往受到限制,因此它们也是功能。
Review
::回顾Use the function for #1 - #3.
::在 # 1 - # 3 中使用函数 x=t- 4; y=t2+2。1. Find the inverse of the function.
::1. 查找函数的反向。2. Does the point (-2, 6) live on the function or its inverse?
::2. 点(-2, 6)是否活在函数上或其反向上?3. Does the point (0, 1) live on the function or its inverse?
::3. 点(0,1)是否在函数上存在或反向存在?Use the relation for #4 - #6.
::使用关系 x=t2; y=4 - t 用于 # 4 - # 6 。4. Find the inverse of the relation.
::4. 找出这种关系的反面。5. Does the point (4, 0) live on the relation or its inverse?
::5. 点(4,0)是否以相关关系或相反关系为依据?6. Does the point (0, 4) live on the relation or its inverse?
::6. 点(0, 4)是否维持在关系或反向关系上?Use the function for #7 - #9.
::使用函数 x=2t+1; y=t2- 3为 # 7 - # 9 使用函数 x=2t+1; y=t2- 3 为 # 7 - # 9 使用函数 x=2t+1; y=t2- 3 for # 7 - # 9 。7. Find the inverse of the function.
::7. 查找函数的反向。8. Does the point (1, 5) live on the function or its inverse?
::8. 点(1,5)是否在函数上存在,或其反向存在?9. Does the point (9, 13) live on the function or its inverse?
::9. 点(9,13)是否在函数上存在,还是反之?Use the function for #10 - #11.
::为 # 10 - # 11 使用函数 x=3t+14; y=t2- 2t。10. Find the inverse of the function.
::10. 查找函数的反向。11. Identify where the parametric function intersects with its inverse.
::11. 查明参数函数与其反相交错之处。Use the relation for #12 - #13.
::使用关系 x=t2; y=4- 4用于 # 12 - # 13 。12. Find the inverse of the relation.
::12. 找出相互关系的反面。13. Identify where the relation intersects with its inverse.
::13. 查明关系与其反向交错之处。14. Parameterize and then graph the function and its inverse.
::14. 参数f(x)=x2+x-6,然后绘制函数及其反向图。15. Parameterize and then graph the function and its inverse.
::15. f(x)=x2+3x+2的参数,然后绘制函数及其反向图。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
To find the inverse of a parametric equation, simply switch the functions for
and