Section outline

  • You know how to multiply two together and you’ve seen the advantages of using trigonometric polar form , especially when multiplying more than two complex numbers at the same time.  Because raising a number to a whole number power is repeated multiplication, you also know how to raise a complex number to a whole number power. 
    ::您知道如何将两个乘在一起,您也看到了使用三角极形式的优势,特别是同时乘以两个复杂数字的优势。 因为将一个数字加到一个整数的功率是重复乘法,您也知道如何将一个复杂数字加到一个整数的功率。

    What is a geometric interpretation of squaring a complex number? 
    ::如何几何解释一个复杂数字的对称?

    De Moivre's Theorem and nth Roots
    ::莫伊夫雷的理论和Nth根

    Recall that if z 1 = r 1 cis   θ 1  and  z 2 = r 2 cis   θ 2 with r 2 0 , then z 1 z 2 = r 1 r 2 cis   ( θ 1 + θ 2 ) .
    ::回顾,如果z1=r1Icis%1和z2r2Icis%2,加上r2°0,则z1Z2=r1R2Icis(1)2。

    If z 1 = z 2 = z = r   cis   θ  then you can determine z 2  and z 3 :
    ::如果z1=z2=z=z=rcis ,那么您可以确定z2和z3:

    z 2 = r r cis   ( θ + θ ) = r 2   cis   ( 2 θ ) z 3 = r 3   cis   ( 3 θ )

    ::z2=rrcis()=r2cis(2)z3=r3cis(□)

    De Moivre’s Theorem simply generalizes this pattern to the power of any positive integer.
    ::Deivre 的理论只是将这种模式概括为任何正整数的力量。

    z n = r n cis   ( n θ )
    ::zn=破碎No

    In addition to raising a complex number to a power, you can also take square roots, cube roots and  n t h roots of complex numbers.  Suppose you have complex number z = r   cis   θ  and you want to take the  n t h root of z .  In other words, you want to find a number v = s cis   β  such that v n = z . Do some substitution and manipulation:
    ::除了向电源添加复数外, 您还可以从复数的平方根、 立方根和 nth 根根。 假设您有复数 z=r cis , 您想要从 z 的 nth 根中取出。 换句话说, 您想要找到数字 v=sQis β, 这样Vn=z。 做一些替换和操作 :

    v n = z ( s cis   β ) n = r cis   θ s n cis   ( n β ) = r cis   θ

    ::vn=z(s-cis β)n=r-cis °sn-cisNo=r-cis

    You can see at this point that to find s  you need to take the  n t h root of r .  The trickier part is to find the angles, because n β  could be any angle coterminal with θ .  This means that there are n  different  n t h roots of z .
    ::您可以在这一点上看到, 要找到 s, 您需要选择 r 的 nth 根 。 最棘手的部分是找到角度, 因为 n 可以是 的任何角度的 Coterminal 。 这意味着 z 有 n 不同的 nw 根 。

    n β = θ + 2 π k β = θ + 2 π k n

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不

    The number k  can be all of the counting numbers including zeros up to n 1 .  So if you are taking the  4 t h root, then k = 0 , 1 , 2 , 3
    ::数字 k 可以是所有计数数, 包括n- 1 之前的零。 所以, 如果您选择了 4 根, 那么 k= 0, 1, 2, 3 。

    Thus the  n t h root of a complex number requires n  different calculations, one for each root:
    ::因此,复数的 nth 根需要 n 不同的计算, 每个根需要一个 :

    v = r n cis   ( θ + 2 π k n )   f o r   { k   ϵ   I | 0 k n 1 }
    ::v=rnQICIS (2kn) 用于 {k} {I0k} 的 v=rnQICIS (2kn)

    To apply this formula, find the cube root of the number 8. Most students know that 2 3 = 8  and so know that 2 is the cube root of 8.  However, they don’t realize that there are two other cube roots that they are missing.  Remember to write out k = 0 , 1 , 2  and use the unit circle whenever possible to help you to find all three cube roots.
    ::要应用此公式, 请找到数字 8 的立方根 。 大多数学生知道 23 = 8 , 所以知道 2 是 8 的立方根 。 但是, 他们不知道他们缺少了另外两个立方根 。 记住要写入 k= 0. 1, 2 并尽可能使用单位圆来帮助您找到所有三个立方根 。

    8 = 8   cis   0 = ( s cis   β ) 3 z 1 = 2 cis   ( 0 + 2 π 0 3 ) = 2   cis   0 = 2 ( cos 0 + i sin 0 ) = 2 ( 1 + 0 ) = 2 z 2 = 2 cis   ( 0 + 2 π 1 3 ) = 2   cis ( 2 π 3 ) = 2 ( cos ( 2 π 3 ) + i sin ( 2 π 3 ) ) = 2 ( 1 2 + 3 2 i ) = 1 + i 3 z 3 = 2 cis ( 0 + 2 π 2 3 ) = 2   cis ( 4 π 3 ) = 2 ( cos ( 4 π 3 ) + i sin ( 4 π 3 ) ) = 2 ( 1 2 3 2 i ) = 1 i 3

    ::8=8 Cis0 = 2Cis0 = 2Cis0= 2Cis0= 2Cis0= 2Cos0+0+isin=0=0+0=0+0=2Z2=2Cis2=2Cis2=2Cis2(2+23)=2Cis(23)+isin(23))=2(12+32i)=1+i3Z3=2Cis(0+223)=2Cis3=2Cis0=2Z2=2(43)+isin(43))=2Cis(2=2(12-32i) _1-i

    The cube roots of 8 are 2, 1 + i 3 , 1 i 3 .
    ::8的立方根是 2 - 1+3 - 1 - i3 。

    To check, that they are the cube roots,  cube them all simplify.
    ::要检查,它们是立方根, 立方体所有简化。

    z 1 3 = 2 3 = 8 z 2 3 = ( 1 + i 3 ) 3 = ( 1 + i 3 ) ( 1 + i 3 ) ( 1 + i 3 ) = ( 1 2 i 3 3 ) ( 1 + i 3 ) = ( 2 2 i 3 ) ( 1 + i 3 ) = 2 2 i 3 + 2 i 3 + 6 = 8

    ::z13=23=23=8z23=(-1+1)3=(-1+1)3=(-1+3)____(-1+3)____(-1+3)____(-1+3)____(-1+3)=(1-2-3)____(-1+3)____(-1+3)=(-2-2-2-2)____(-1+3)____(-1+3)=2-2i3+23+6=8)

    Note how many steps and opportunities there are for making a mistake when multiplying multiple terms in rectangular form .  When you check z 3 , use trigonometric polar form.

    z 3 3 = 2 3   cis   ( 3 4 π 3 ) = 8 ( cos 4 π + i sin 4 π ) = 8 ( 1 + 0 ) = 8

    ::注意在以矩形形式乘以多个条件时, 错误的步数和机会有多少。 当检查 z3 时, 请使用三角极表 。 z33= 23 cis (343) = 8 (cos @ 44 isin4) = 8(1+0) =8

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked what a geometric interpretation of squaring a complex number is. Squaring a complex number produces a new complex number.  The angle gets doubled and the magnitude gets squared, so geometrically you see a rotation.
    ::早些时候,有人问您如何对组合数字进行几何解释。对复杂数字进行几何解释会产生新的复杂数字。角度翻倍,大小平方,因此您可以看到旋转的几何解释。

    lesson content

    Example 2
    ::例2

    Plot the roots of 8 graphically and discuss any patterns you notice. 
    ::用图形绘制 8 的根, 并讨论您注意到的任何模式 。

    lesson content

    The three points are equally spaced around a circle of radius 2.  Only one of the points, 2 + 0 i , is made up of only real numbers.  The other two points have both a real and an imaginary component which is why they are off of the  x axis. 
    ::三个点在半径 2 的圆圈上都一样。 只有一个点, 2+0i, 由实际数字组成。 另外两个点既有真实的, 也有虚构的成分, 这也是为什么它们不在 x 轴外的原因 。

    As you become more comfortable with roots, you can just determine the number of points that need to be evenly spaced around a certain radius circle and find the first point.  The rest is just logic.
    ::随着你对根变得更加舒适,你就可以确定在某个半径圆周围需要平均间距的点数,然后找到第一点。剩下的只是逻辑。

    Example 3
    ::例3

    What are the fourth roots of 16   cis   48 ?
    ::16CS48的第四根是什么?

    There will be 4 points, each 90  apart with the first point at 2   cis   ( 12 )
    ::将会有4个点,每90个点,除第1点2Cis (12个)外。

    2   cis   ( 12 ) ,   2   cis   ( 102 ) ,   2   cis   ( 192 ) ,   2   cis   ( 282 )
    ::2cis(12)、2cis(102)、2cis(192)、2cis(282)

    Example 4
    ::例4

    Solve for z  by finding the nth root of the complex number.
    ::通过找到复数的 nth 根来解决 z 。

    z 3 = 64 64 3 i
    ::z3=64-643i

    First write the complex number in cis  form.  Remember to identify k = 0 , 1 , 2 . This means the roots will appear every 360 3 = 120 .
    ::先在 Cis 格式中写入复数。 记住要识别 k= 0, 1, 2 。 这意味着根将显示每360\\ 3= 120\ 。

    z 3 = 64 64 3 i = 128 cis   300 z 1 = 128 1 3 cis   ( 300 3 ) = 128 1 3 cis ( 100 ) z 2 = 128 1 3 cis   ( 220 ) z 3 = 128 1 3 cis   ( 340 )

    ::z3=64-643i=128-Cis 300-Z1=12813-Cis(3003)=12813-Cis(100)z2=12813-Cis(220)z3=12813-Cis(340)

    Example 5
    ::例5

    Use De Moivre’s Theorem to evaluate the following power.
    ::使用德莫伊夫雷的理论来评估以下权力。

    ( 2 2 i ) 6
    :sad2-2(i)6)

    First write the number in trigonometric polar form, then apply De Moivre’s Theorem and simplify.
    ::先以三角极形式写入数字, 然后应用德莫伊夫雷的定理并简化。

    ( 2 2 i ) 6 = ( 2   cis   315 ) 6 = 2 6 cis   ( 6 315 ) = 64 cis   ( 1890 ) = 64 cis   ( 1890 ) = 64 cis   ( 90 ) = 64 ( cos 90 + i sin 90 ) = 64 ( 0 + i ) = 64 i

    :sad2-2i)6=(2cis 315)6=(26cis (6}315)=(64)cis(1890)=(64)cis(1890)=(64)cis(90)=(64)(64)(cos 90)-(i) i(sin)-(90)=(64)(0+(i)=64i)

      Summary
    • De Moivre's Theorem generalizes the pattern of raising a complex number to the power of any positive integer: z n = r n cis ( n θ )  
      ::Deivre 的理论理论概括了将一个复杂数字提高到任何正整数的功率的模式:zn=rncisNo
    • There are n  different nth roots of a complex number, each corresponding to a different angle.
      ::复数有 n 不同的 nn 根, 每一根对应不同的角度 。
    • To find the nth root of a complex number, use the formula: v = r n cis ( θ + 2 π k n )  for  { k I | 0 k n 1 }  
      ::要找到复数的 nth 根, 请使用公式 : v=rnQis(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Review
    ::回顾

    Use De Moivre’s Theorem to evaluate each expression.  Write your answers in rectangular form.
    ::使用 De Moivre 的定理来评估每个表达式。 以矩形形式写入您的答复 。

    1.  ( 1 + i ) 5
    ::1.(1+1)5

    2.  ( 1 3 i ) 3
    ::2. (1-3i)3

    3.  ( 1 + 2 i ) 6
    ::3. (1+2i)6

    4.  ( 3 i ) 5
    ::4. (3-1)5

    5.  ( 1 2 + i 3 2 ) 4
    ::5. (12+i32)4

    6.  Find the cube roots of 3 + 4 i .
    ::6. 找出3+4i的立方根。

    7.  Find the  5 t h roots of 32 i .
    ::7. 找出32i的第5根根。

    8.  Find the  5 t h roots of 1 + 5 i .
    ::8. 找出1+5i的第5根根。

    9.  Find the  6 t h roots of - 64 and plot them on the complex plane.
    ::9. 找出64的第六根根,在复杂的平面上绘制。

    10.  Use your answers to #9 to help you solve x 6 + 64 = 0 .
    ::10. 使用对 #9 的回答来帮助解析 x6+64=0 。

    For each equation: a) state the number of roots, b) calculate the roots, and c) represent the roots graphically.
    ::每个方程sada) 说明根数,(b) 计算根数,(c) 以图形表示根数。

    11.  x 3 = 1
    ::11. x3=1

    12.  x 8 = 1
    ::12. x8=1

    13.  x 12 = 1
    ::13. x12=1

    14.  x 4 = 16
    ::14. x4=16

    15.  x 3 = 27
    ::15. x3=27

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。