莫伊夫雷的理论和Nth根
Section outline
-
You know how to multiply two together and you’ve seen the advantages of using trigonometric polar form , especially when multiplying more than two complex numbers at the same time. Because raising a number to a whole number power is repeated multiplication, you also know how to raise a complex number to a whole number power.
::您知道如何将两个乘在一起,您也看到了使用三角极形式的优势,特别是同时乘以两个复杂数字的优势。 因为将一个数字加到一个整数的功率是重复乘法,您也知道如何将一个复杂数字加到一个整数的功率。What is a geometric interpretation of squaring a complex number?
::如何几何解释一个复杂数字的对称?De Moivre's Theorem and nth Roots
::莫伊夫雷的理论和Nth根Recall that if and with , then .
::回顾,如果z1=r1Icis%1和z2r2Icis%2,加上r2°0,则z1Z2=r1R2Icis(1)2。If then you can determine and :
::如果z1=z2=z=z=rcis ,那么您可以确定z2和z3:
::z2=rrcis()=r2cis(2)z3=r3cis(□)De Moivre’s Theorem simply generalizes this pattern to the power of any positive integer.
::Deivre 的理论只是将这种模式概括为任何正整数的力量。
::zn=破碎In addition to raising a complex number to a power, you can also take square roots, cube roots and roots of complex numbers. Suppose you have complex number and you want to take the root of . In other words, you want to find a number such that . Do some substitution and manipulation:
::除了向电源添加复数外, 您还可以从复数的平方根、 立方根和 nth 根根。 假设您有复数 z=r cis , 您想要从 z 的 nth 根中取出。 换句话说, 您想要找到数字 v=sQis β, 这样Vn=z。 做一些替换和操作 :
::vn=z(s-cis β)n=r-cis °sn-cis=r-cis
You can see at this point that to find you need to take the root of . The trickier part is to find the angles, because could be any angle coterminal with . This means that there are different roots of .
::您可以在这一点上看到, 要找到 s, 您需要选择 r 的 nth 根 。 最棘手的部分是找到角度, 因为 n 可以是 的任何角度的 Coterminal 。 这意味着 z 有 n 不同的 nw 根 。
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不The number can be all of the counting numbers including zeros up to . So if you are taking the root, then .
::数字 k 可以是所有计数数, 包括n- 1 之前的零。 所以, 如果您选择了 4 根, 那么 k= 0, 1, 2, 3 。Thus the root of a complex number requires different calculations, one for each root:
::因此,复数的 nth 根需要 n 不同的计算, 每个根需要一个 :
::v=rnQICIS (2kn) 用于 {k} {I0k} 的 v=rnQICIS (2kn)To apply this formula, find the cube root of the number 8. Most students know that and so know that 2 is the cube root of 8. However, they don’t realize that there are two other cube roots that they are missing. Remember to write out and use the unit circle whenever possible to help you to find all three cube roots.
::要应用此公式, 请找到数字 8 的立方根 。 大多数学生知道 23 = 8 , 所以知道 2 是 8 的立方根 。 但是, 他们不知道他们缺少了另外两个立方根 。 记住要写入 k= 0. 1, 2 并尽可能使用单位圆来帮助您找到所有三个立方根 。
::8=8 Cis0 = 2Cis0 = 2Cis0= 2Cis0= 2Cis0= 2Cos0+0+isin=0=0+0=0+0=2Z2=2Cis2=2Cis2=2Cis2(2+23)=2Cis(23)+isin(23))=2(12+32i)=1+i3Z3=2Cis(0+223)=2Cis3=2Cis0=2Z2=2(43)+isin(43))=2Cis(2=2(12-32i) _1-iThe cube roots of 8 are 2, .
::8的立方根是 2 - 1+3 - 1 - i3 。To check, that they are the cube roots, cube them all simplify.
::要检查,它们是立方根, 立方体所有简化。
::z13=23=23=8z23=(-1+1)3=(-1+1)3=(-1+3)____(-1+3)____(-1+3)____(-1+3)____(-1+3)=(1-2-3)____(-1+3)____(-1+3)=(-2-2-2-2)____(-1+3)____(-1+3)=2-2i3+23+6=8)Note how many steps and opportunities there are for making a mistake when multiplying multiple terms in rectangular form . When you check , use trigonometric polar form.
::注意在以矩形形式乘以多个条件时, 错误的步数和机会有多少。 当检查 z3 时, 请使用三角极表 。 z33= 23 cis (343) = 8 (cos @ 44 isin4) = 8(1+0) =8Examples
::实例Example 1
::例1Earlier, you were asked what a geometric interpretation of squaring a complex number is. Squaring a complex number produces a new complex number. The angle gets doubled and the magnitude gets squared, so geometrically you see a rotation.
::早些时候,有人问您如何对组合数字进行几何解释。对复杂数字进行几何解释会产生新的复杂数字。角度翻倍,大小平方,因此您可以看到旋转的几何解释。Example 2
::例2Plot the roots of 8 graphically and discuss any patterns you notice.
::用图形绘制 8 的根, 并讨论您注意到的任何模式 。
The three points are equally spaced around a circle of radius 2. Only one of the points, , is made up of only real numbers. The other two points have both a real and an imaginary component which is why they are off of the axis.
::三个点在半径 2 的圆圈上都一样。 只有一个点, 2+0i, 由实际数字组成。 另外两个点既有真实的, 也有虚构的成分, 这也是为什么它们不在 x 轴外的原因 。As you become more comfortable with roots, you can just determine the number of points that need to be evenly spaced around a certain radius circle and find the first point. The rest is just logic.
::随着你对根变得更加舒适,你就可以确定在某个半径圆周围需要平均间距的点数,然后找到第一点。剩下的只是逻辑。Example 3
::例3What are the fourth roots of ?
::16CS48的第四根是什么?There will be 4 points, each apart with the first point at .
::将会有4个点,每90个点,除第1点2Cis (12个)外。
::2cis(12)、2cis(102)、2cis(192)、2cis(282)Example 4
::例4Solve for by finding the nth root of the complex number.
::通过找到复数的 nth 根来解决 z 。
::z3=64-643iFirst write the complex number in form. Remember to identify . This means the roots will appear every .
::先在 Cis 格式中写入复数。 记住要识别 k= 0, 1, 2 。 这意味着根将显示每360\\ 3= 120\ 。
::z3=64-643i=128-Cis 300-Z1=12813-Cis(3003)=12813-Cis(100)z2=12813-Cis(220)z3=12813-Cis(340)Example 5
::例5Use De Moivre’s Theorem to evaluate the following power.
::使用德莫伊夫雷的理论来评估以下权力。
:2-2(i)6)
First write the number in trigonometric polar form, then apply De Moivre’s Theorem and simplify.
::先以三角极形式写入数字, 然后应用德莫伊夫雷的定理并简化。
:2-2i)6=(2cis 315)6=(26cis (6}315)=(64)cis(1890)=(64)cis(1890)=(64)cis(90)=(64)(64)(cos 90)-(i) i(sin)-(90)=(64)(0+(i)=64i)
Summary -
De Moivre's Theorem
generalizes the pattern of raising a complex number to the power of any positive integer:
::Deivre 的理论理论概括了将一个复杂数字提高到任何正整数的功率的模式:zn=rncis -
There are
different nth roots of a complex number, each corresponding to a different angle.
::复数有 n 不同的 nn 根, 每一根对应不同的角度 。 -
To find the nth root of a complex number, use the formula:
::要找到复数的 nth 根, 请使用公式 : v=rnQis(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Review
::回顾Use De Moivre’s Theorem to evaluate each expression. Write your answers in rectangular form.
::使用 De Moivre 的定理来评估每个表达式。 以矩形形式写入您的答复 。1.
::1.(1+1)52.
::2. (1-3i)33.
::3. (1+2i)64.
::4. (3-1)55.
::5. (12+i32)46. Find the cube roots of .
::6. 找出3+4i的立方根。7. Find the roots of .
::7. 找出32i的第5根根。8. Find the roots of .
::8. 找出1+5i的第5根根。9. Find the roots of - 64 and plot them on the complex plane.
::9. 找出64的第六根根,在复杂的平面上绘制。10. Use your answers to #9 to help you solve .
::10. 使用对 #9 的回答来帮助解析 x6+64=0 。For each equation: a) state the number of roots, b) calculate the roots, and c) represent the roots graphically.
::每个方程a) 说明根数,(b) 计算根数,(c) 以图形表示根数。
11.
::11. x3=112.
::12. x8=113.
::13. x12=114.
::14. x4=1615.
::15. x3=27Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
De Moivre's Theorem
generalizes the pattern of raising a complex number to the power of any positive integer: