职能的组成
章节大纲
-
If , and , what is ?
::如果f(x)=x+2, g(x)=2x+4, 什么是f(g(x))?A function can be conceptualized as a ‘black box’. The input, or value is placed into the box, and the box performs a specific set of operations on . Once the operations are complete, the output (the “ ” or “ ” value) is provided. Once the output is provided, the box is ready to work on the next input.
::函数可以被概念化为`黑盒 ' 。输入或 x 值被放入框中,框在 x 上执行一套特定的操作。操作完成后,即提供输出(“f(x)”或“y”值)。一旦输出提供,框将准备对下一个输入工作。Using this idea, function composition can be seen as a box inside of a box. The input value goes into the inner box, and then the output of the inner box is used as the input of the outer box.
::使用这个概念, 函数构成可以被视为框内的一个框。 输入 x 值会进入内框, 然后内框的输出会用作外框的输入 。Function Composition
::职能构成构成Functions are often described in terms of “input” and “output”. For example, consider the function . When we input an value, we output a value, or a function value. We find the output by taking the input , multiplying by 2, and adding 3. We can do this for any value of . Now consider a second function . For this function too, we can take an value, input the into , and obtain an output. What happens if we take the output of and use it as the input of ?
::函数通常用“投入”和“产出”来描述。例如,考虑函数 f(x)=2x+3。当我们输入一个 x 值时,我们输出一个 y 值或函数值。我们通过输入 x 来发现输出,乘以2 和增加 3 。我们可以为任何 x 值这样做。现在考虑第二个 函数 g(x)=5x。对于这个函数,我们可以将一个 x 值输入 g(x),然后获得输出。如果我们将 g 的输出作为 f 的输入,会发生什么?Given the function definition above, . Therefore if , then we have . What happens if we then take the output of 20 and use it as the input of ?
::根据上文 g(x) = 5x 的函数定义, g(x) = 5x。 因此, 如果 x= 4, 那么我们就有 g(4) = 5(4) = 20。 如果我们以 20 的输出作为 f 的输入, 那么结果会如何 ?Substituting 20 in for in gives: .
::在 f(x) = 2x+3 中, x x 的替代值为 20 英寸 。 f( 20) = 2( 20)+3= 43 。The table below shows several examples of this same process:
::下表列出了同一过程的几个例子:
::x xOutput from
::g 输出输出Output from
::f 产出产出 f2
10
23
3
15
33
4
20
43
5
25
53
Examining the values in the table, we can see a pattern : all of the final output values from are 3 more than 10 times the initial input. We have created a new function called out of in which is the input:
::检查表格中的值, 我们可以看到一个模式: f 的全部最终输出值是初始输入的10倍以上。 我们从 f( x) = 2x+3 中创建了名为 h( x) 的新函数, 其中 g( x) = 5x 是输入 :
::h(x)=f(5x)=2(5x)+3=10x+3When we input one function into another, we call this the composition of the two functions. Formally, we write the composed function as or write it as .
::当我们将一个函数输入到另一个函数时, 我们将此称为两个函数的构成。 正式地, 我们将组成函数写成 f( g( x)) = 10x+3 , 或者把它写成 f( fg) x= 10x+3 。Take the two functions: and . Find and .
::采取两个函数 : f( x) = 2x+4andg( x) = ( 12) x-2 查找 f( g( x) ) 和 g( f( x) ) 。and
:xx) = 2x+4 和 g(x) = (12) x-2
::f(g(xx))=2((12x-2)+4=(22x)x-4+4=(22x)xxx(f(x)x))=g(2x+4)=(12)(2x+4)-2=x+2-2=x。In this case, the composites are equal to each other, and they both equal , the original input into the function. This means that there is a special relationship between these two functions. We will examine this relationship in later concepts. It is important to note, however, that is not necessarily equal to .
::在这种情况下,复合物彼此平等,它们都等于函数的原始输入x。这意味着这两个函数之间存在特殊关系。我们将在以后的概念中研究这种关系。但必须指出,f(g(x)不一定等于g(f(x))。When we compose functions, we are combining two (or more) functions by inputting the output of one function into another. We can also decompose a function. Consider the function . We can decompose this function into an “inside” and an “outside” function. For example, we can construct with a linear function and a quadratic function . If and , then . The linear function is the inside function, and the quadratic function is the outside function.
::当我们组成函数时, 我们通过将一个函数的输出输入到另一个函数中, 将两个( 或更多) 函数合并。 我们还可以分解一个函数。 将函数 f( x) = (2x+1) 2 。 我们可以将此函数分解成“ 内侧” 和“ 外侧” 函数。 例如, 我们可以构造 f( x) = (2x+1) 2, 带有线性函数和四方函数。 如果 g( x) =x2 和 h( x) = (2x+1) , 那么 f( x) = g( h) x) 。 线性函数 h( x) = (2x+1) 是内部函数, 而四方函数 g( x) =x2 是外部函数 。The decomposition of a function is not necessarily unique. For example, there are many ways that we could express a linear function as the composition of other .
::函数的分解不一定是独一无二的。 例如,我们可以以多种方式将线性函数表达为其他函数的构成。Examples
::实例Example 1
::例1Earlier, you were asked to find if , and .
::早些时候,如果f(x)=x+2和g(x)=2x+4,您被要求找到 f(g(x)x) 。
::f( g( x)) = f( 2x+4) = ( 2x+4) +2= 2x+6Once you get the idea, composite functions aren’t as difficult as they look!
::综合功能不会像看起来那么困难!Example 2
::例2Given: and
::给定值: f( x) =5x+3 和 g( x) = 3x2Find:
::查找:f(g(4))To find , we need to know what is, so we know what to substitute into :
::要找到f(g(4)),我们需要知道g(4)是什么, 所以我们知道什么可以替代 f(x) :Substitute 4 for for the function , giving:
::函数 g(x) 的 x 替代 4 , 给: 342Simplify:
::简化: 316=48
::*g(4)=48Substitute 48 for the in the function giving:
::函数 f( x) 给付: 5( 48)+3 中 x x 的替代值为 48Simplify:
::简化: 240+3=243
::f(g(4))=243Example 3
::例3Given : %3D7n%2B1%2B4(g
)"> , , and
::给定 : h( n) = 7n+1+4( g( n) ) g( t) t 和 f( x) 2x+g( x)Find:
::查找:f(h(-5))First, let’s solve for the value of the inner function, . Then we'll know what to plug into the outer function.
::首先,让我们解决内部函数, h(-5) 的价值问题, 然后我们就会知道外部函数中要插入什么。
::h(-5)=(7)(-5)+1+4(g(-5))To solve for the value of , we need to solve
::要解决 h 值, 我们需要解决 g( - 5) 。
::g(-5)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Now we have:
::现在我们有:h(-5)=(7)(-5)+1+(4)(5)Simplify to get:
::简化以获得: h(- 5) @% 14Now we know that . That tells us that is
::也就是说f(h(-5))是f(-14)Find
::查找 f( - 14) = (-2)( - 14)+g( - 14)So to solve for the value of , we need to solve for the value of
::因此,要解决f(-14)的值,我们需要解决g(-14)的值
::g( - 14) ( - 14) ( - 14) g( - 14) =14Now we can finish up!
::现在我们可以完成!
::f( - 14) = (-2) (-14) +14f(-14) = 42Example 4
::例4Given: and
::g(x)=5x2和h(x)=5x2-2-2x-4(g(x))Find:
::查找: h( g( - 1))First, solve for the value of the inner function to find what to plug into the outer function
::首先,解决内部函数 g(-1) 的值, 以找到在外部函数 h( g( 1) ) 中插入什么
::g( - 1) =5( - 1) 2g( - 1) = 5- 1) \\\ \\ \ g( 1) =5Next, solve for which we now know is:
::下一步, h( g( - 1)) 的解决方案, 我们现在知道是: h(5) 。
::h(5)=5(52)+(-2)(5)-4(g(5))To solve for the value of , we need to solve for the value of .
::要解决 h 的值, 我们需要解决 g(5) 的值 。
::g(5)=5(52)g(5)=125h(5)=5(52)+(-2)(5)+(-4)(125)Finally:
::最后:h(5)____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Review
::回顾For #1-4, given and and , find the indicated function.
::对于 # 1-4, 给定 f( x) = 2x- 1 和 g( x) = 3x 和 h( x) = x2+ 1, 找到指定的函数 。-
:g( 3) )
-
::f(h(7)) -
:g(- 4))
-
:fg(h(2)))
-
Given:
and
Find
::给定 : f( x) =% 5x+2 和 g( x) = 12x+4 查找 f( g( 12) ) -
Given:
and
Find
::给定 : g( x) @%%%3x+6 和 h( x)= 9x+3 查找 g( h) (13) -
Given:
and
Find
::给定 : f( x) 15x+4 和 g( x) = 4x2 查找 f( g(10)) -
Given:
and
Find
::g( x) = 3 x- 46 和 h( x) x3 查找 h( g(4)) -
Given:
and
Find
::给定 : f( x) =x+2 和 g( x) =% 2x = 查找 g( f( - 7) ) -
Given
and given
and given
Find
::给定 f( x)\\\\%3x+2 和给定 g( x)= 2x2 和给定 h( x)= 4\\\\\\\\ x#6 查找 f( g( h(1))) -
Given
and given
and given
Find
::给定 f(x) = (-3) 和给定 g(x) = 2x 和给定 h(x) = 4x = 12 Find fg(18) )
-
Are compositions commutative? In other words, does
?
::构成是否具有通融性?换句话说,f(g(x))=g(f(x))? -
Given:
and
. Find
::给出的 f( x)\\\\\\\\\\\\5x和 h( x)=3x+2. 查找 f( h( x)) -
Two functions are inverses of each other if
and
. If
, find its inverse:
.
::如果 f( g( x)) =x 和 g( f( f( x) ) =x, 如果 f( x) =x+3 发现其反义: g( x) , 则两个函数是反义 。 -
A toy manufacturer has a new product to sell. The number of units to be sold,
, is a function of the price
such that:
. The revenue
earned from the sales is a function of the number of units sold
such that:
%3D1000%20-%20%5Cfrac%7B1%7D%7B4%7Dx%5E2">
Find the function for revenue in terms of price,
.
::玩具制造商有一个新的产品要出售。要出售的单位数目 n 取决于价格p, 即:n(p)=30-25p。销售所得的收入是售出的单位数目的函数,即:r=1000-14x2,从价格上找出收入的函数,p。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -