Section outline

  • You're familiar with the  idea of a limit of a function, and that some limits a re computed using numerical and graphical methods. Limits can also be evaluated using the properties of limits. How would you find  lim x 0 x 2 + 5 x x  without using a graph or using a table of values?

    Properties of Limits
    ::限制属性

    Let’s begin with some observations about limits of some simple functions. Consider the following limit problems: lim x 2 5  and lim x 4 x .
    ::让我们先观察一下某些简单功能的局限性。 考虑一下以下的限制问题: limx%25 和 limx%4x 。

    We note that each of these functions is defined for all real numbers. If we apply our intuition for finding the limits we conclude correctly that:  lim x 2 5 = 5 and lim x 4 x = 4 .
    ::我们注意到,这些功能中的每一功能都是为所有实际数字所定义的。如果我们运用直觉来找到极限,我们就会正确地得出结论:limx25=5和limx4x=4。

    The above results can be encapsulated in the following limit properties:
    ::上述结果可概括于以下限制特性:

    Basic Limit Properties:
    ::基本限制属性 :

    1. lim x a c = c
      ::立方厘米=c
    2. lim x a x = a
      ::立方厘米=a

    Many functions can be expressed as the sums, differences, products, quotients, powers and roots of other more simple functions. The following properties are also useful in evaluating limits:
    ::许多功能可以表现为其他更简单功能的总和、差异、产品、商数、权力和根基。

    More Basic Limit Properties:
    ::更多基本限制属性 :

    If  lim x a f ( x ) and lim x a g ( x )  both exist, then
    ::如果存在 limxaf(x) 和 limxag(x) , 那么

    1. lim x a [ c f ( x ) ] = c lim x a f ( x ) where c is a real number,
      ::c 是真实数字的 c=climx=climx=xxxxxxxxxxx
    2. lim x a [ f ( x ) ± g ( x ) ] = lim x a f ( x ) ± lim x a g ( x ) ,
      :sadxxxxxxxxxxxxxxxx)= limx*5xxxxxx=xxxxxxx=ag(x)x,
    3. lim x a [ f ( x ) g ( x ) ] = lim x a f ( x ) lim x a g ( x ) ,
      :sadxxxxxxxxxxxx) = limx*5xxxxxxxxxxxxxx)
    4. lim x a [ f ( x ) g ( x ) ] = lim x a f ( x ) lim x a g ( x )  provided that  lim x a g ( x ) 0.  
      :sadxx)g(x)=limx)af(x)limx=ag(x)x(x)
    5. lim x a [ f ( x ) ] n = [ lim x a f ( x ) ] n where n is a real number
      ::n 是真实数字的 n = [limx_a[f(x)]n= [limx_af(x)]n
    6. lim x a f ( x ) n = lim x a f ( x ) n , where  n is either an odd integer or  n is an even positive integer and lim x a f ( x ) > 0.
      ::limxaf(x)n =limxaf(x)n,其中n为奇数整数或n为正数整数,而limxaf(x)>0。

    Knowing these properties, allows evaluation of the limits of a wide range of functions.
    ::了解这些特性,就能够评估各种职能的限度。

    Take the problem:  lim x 2 ( 3 x + 7 ) . Based on the properties above, the limit can be evaluated in the following steps:
    ::根据上述属性,可按以下步骤评估限额:

    lim x 2 ( 3 x + 7 ) = lim x 2 ( 3 x ) + lim x 2 7 = 3 lim x 2 ( x ) + 7 = 3 2 + 7 = 13

    ::立方公尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺= 立方尺=

    Therefore: lim x 2 ( 3 x + 7 ) = 13
    ::因此: limx%2( 3x+7)=13

    Note that the application of the basic limit properties  results, in this case, in a limit value that is the same as direct substitution of  x = 2 in the function.
    ::请注意,在这种情况下,适用基本限值的属性所产生的限值与函数中的 x=2 的直接替代值相同。

    Now, evaluate lim x 2 ( x 3 2 x ) .
    ::现在, 评估 limx_ 2( x3_ 2x) 。

    Based on the properties of limits , the limit can be evaluated in the following steps:
    ::根据限制的特性,可以采取以下步骤评价限制:

    lim x 2 ( x 3 2 x ) = lim x 2 x 3 lim x 2 2 x = ( lim x 2 x ) 3 lim x 2 2 x = ( 2 ) 3 4 = 16

    ::立方公尺=( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方公尺) =( 立方尺)

    Therefore: lim x 2 ( x 3 2 x ) = 16
    ::因此: limx%2(x3%2x)=16

    Again, note that the application of the basic limit properties  results, in this case, in a limit value that is the same as direct substitution of  x = 2 in the function.
    ::请注意,在此情况下,适用基本限制属性的结果是,其限值与函数中的 x=2 的直接替代值相同。

    Examples
    ::实例

    Example 1
    ::例1

    lim x 0 x 2 + 5 x x

    Example 2
    ::例2

    Evaluate  lim x 0 f ( x ) where f ( x )  is the rational function f ( x ) = x 3 + 3 x 2 10 x 24 x 2 + 1 .
    ::以 f( x) 为合理函数 f( x) =x3+3x2 - 10x- 24x2+1 的 f( x) 值评价 limx% 0f( x) 。

    lim x 0 f ( x ) = lim x 0 [ x 3 + 3 x 2 10 x 24 x 2 + 1 ] = [ lim x 0 ( x 3 + 3 x 2 10 x 24 ) lim x 0 ( x 2 + 1 ) ] = [ lim x 0 x 3 + lim x 0 3 x 2 lim x 0 10 x lim x 0 24 lim x 0 x 2 + lim x 0 1 ] lim x 0 f ( x ) = lim x 0 [ x 3 + 3 x 2 10 x 24 x 2 + 1 ] = [ 0 + 0 0 24 0 + 1 ] = 24

    ::==[limx=0x0x0x0x0x0x0x0x0x0x3+3x2-10x-24x2+1x1]=[limx0x0(x3+3x2-10x-2--24x-24x-24x-x2+1)]=[limx=0x0x0x0x0x0x0-024x1]

    Example 3
    ::例3

    Find the following limit if it exists: lim x 4 2 x 2 4 x
    ::如果存在以下限制, 则查找该限制 : limx42x24- x

    Let’s apply the basic quotient rule to evaluate this limit.
    ::让我们运用基本商数规则来评估这一限度。

    lim x 4 2 x 2 4 x = lim x 4 2 x 2 lim x 4 4 x = 32 8 = 8 2

    ::==82 =82 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    Therefore: lim x 4 2 x 2 4 x = 8 2
    ::因此: limx*42x24-x=82

    Again, the limit result is the same as using direct substitution of  x = 4 in the function.
    ::同样,限制结果与在函数中使用 x4 的直接替换相同。

    Review
    ::回顾

    1. What is the limit of  3 x 2 + 4 x 9 as x 2 ?
      ::3x2+4x- 9 作为 x2 的上限是多少 ?
    2. What is the limit of  5 x cos ( π x ) as x 0 ?
      ::5xxxxcos(xx) 作为 x%0 的上限是多少?
    3. What is the limit of  5 x + cos ( π x ) as x 1 ?
      ::5x+cos(xx) 作为 x% 1 的上限是多少 ?
    4. If the limit of  f ( x ) as  x 1 is zero, is the limit of  f ( x ) g ( x ) as x 1 always equal to zero, for all g ( x ) ?
      ::如果f(x) 的限值为 x% 1 零,那么对于所有 g(x) 来说, f(x) g(x) 的限值是否始终等于 0 ?
    5. What is lim x 3 x 2 + 7 x + 12 x + 3 ?
      ::什么是limx=3x2+7x+12x+3?
    6. What is lim x 2 x 3 + 4 x 2 + 3 3
      ::什么是 limx% 2x3+4x2+33
    7. Find lim x 2 ( x + 4 ) 3 ( 2 x 1 ) 2
      ::查找 limx%2( x+4) 3( 2x- 1) 2
    8. lim x 7 x 2 + 7 x + 12 x + 7
      ::limx=7x2+7x+12x+7
    9. If the limit of  f ( x ) as  x 5 is one and the limit of  g ( x ) as  x 5 is two, and both  f ( x ) and  g ( x ) are continuous functions, is it necessarily true that f ( 5 ) g ( 5 ) = 2 ?
      ::如果 f( x) 5 的上限为 1, g( x) 5 的上限为 2, f( x) 和 g( x) 是连续函数, 那么 f(5) g(5)=2 是否必然属实 ?
    10. If the limit of  f ( x ) as  x 0 is 5, and g ( x ) = x 2 + x , what is the limit of  g ( f ( x ) ) as x 0 ?
      ::如果 f( x) 以 x_0 表示的 f( x) 限值为 5 , g( x) = x2+x, 则 g( f( x) ) 以 x_0 表示的限值是 多少 ?
    11. What is the limit of  5 e x + 2 π x + x + 2 cos ( x ) as x 0 ?
      ::5ex+2x+x+2cos(x) 作为 x%0 的 5ex+2x+x+2cos(x) 限值是多少?
    12. Let  h ( x ) be a function with a finite limit defined everywhere. What is the limit of  3 sin ( x ) h ( x ) x 9 + 8 x 5 + 10 x 4 + 9 x + 1 + e x ( cos ( h ( x ) sin ( x + 2 π ) ) ) as x π ?
      ::Let h( x) 是一个函数, 其限制范围在任何地方都有定义 。 3sin {( x) h( x) x9+8x5+10x4+9x4+9x1+ex( cos) (h( x)sin}(x+2}) 作为 x} 的限度是多少 ?
    13. Say that p ( x ) = x 3 + x 2 + x + 1 . What must be the limit of  f ( x ) as  x 0 if lim p ( f ( x ) ) = 0 as x 0 ?
      ::说 p( x) =x3+x2+x+1。 如果瘸( f( x)) =0 = x_0, f( x) x2+x1 的极限必须是 x_0 多少 ?
    14. Which limits of  sin ( x ) x can you not take with the quotient rule?
      ::罪(xx)x的哪些限度不能与商数规则相提并论?
    15. Show that  lim f ( x ) 5 is equal to  ( lim f ( x ) ) 5 wherever a limit exists without using the power rule. Is this method enough to prove the power rule?
      ::显示 limf( x) 5 等于 (limf( x) ) 5 , 只要存在限制而不使用权力规则 。 这个方法是否足以证明权力规则 ?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。