Section outline

  • We want to look at finding the roots of a polynomial. Sometimes the polynomial cannot be easily factored, and other algebraic methods (e.g., the quadratic equation) are not applicable, or do not work. When faced with a mathematical problem that cannot be solved with simple algebraic means, calculus sometimes provides a way of finding approximate solutions.
    ::我们想要寻找多元数学的根。 有时,多元数学不能很容易地被考虑在内,而其他代数方法(如二次方程)则不适用,或者无效。 当数学问题无法用简单的代数方法解决时,计算有时会提供找到近似解决方案的途径。

    Newton's Method
    ::牛顿方法

    A simple example will help introduce Newton’s Method for approximating the roots of a polynomial equation.
    ::一个简单的例子将有助于引入牛顿的“接近多面方程式根部的方法 ” 。

    Let's say you want to compute  5 without using a calculator or a table. Any ideas how this could be done? Try thinking about this problem in a different way, so that you make use of linearization .
    ::假设您想要计算 5 而不使用计算器或表格。 任何想法如何做到这一点? 尝试用不同的方式来思考这个问题, 这样您就可以使用线性化 。

    Assume that we are interested in solving the quadratic equation:
    ::假设我们有兴趣解决二次方程式:

    f ( x ) = x 2 5 = 0

    :sadxx) =x2-5=0

    We know this equation has the roots x = ± 5 .
    ::我们知道这个方程式有根 x5。

    The idea here is to find the linearization of f ( x )  at an appropriate point, and then solve the linear equation for x . This is an added twist to the linearization problem!
    ::这里的想法是在一个适当点找到 f( x) 的线性化, 然后解开 x 的线性方程。 这是线性化问题的额外转折 !

    How to choose the linearization point? Since 4 < 5 < 9 , this mean 2 < 5 < 3 .
    ::如何选择线性点? 自 4 < 5 < 9, 这意味着 2 < 5 < 3 。

    We choose the linear approximation of  f ( x ) to be near x 0 = 2  (but, x 0 = 3  could also could be selected).
    ::我们选择 f(x) 的线性近似值, 以接近 x0=2 (但也可以选择 x0=3) 。

    f ( x ) = x 2 5 and f ( 2 ) = 1
    :sadxx)=x2-5和f(2)1

    f ( x ) = 2 x and f ( 2 ) = 4 .
    ::f_(x)=2x和f_(2)=4。

    Using the linear approximation formula,
    ::使用线性近似公式,

    f ( x ) f ( x 0 ) + f ( x 0 ) ( x x 0 ) 1 + ( 4 ) ( x 2 ) 1 + 4 x 8 4 x 9.

    :sadxx) f(x0)+f*(x0)+f*(x0)(x-x0)\*1+(4)(x-2)\*1+4x-8*4x-9。

    Notice that this equation is much easier to solve than f ( x ) = x 2 5 = 0 .
    ::注意此方程比 f( x) =x2 - 5=0 更容易解析 。

    Setting  f ( x ) = 0 and solving for x , we obtain,
    ::设置 f(x)=0 和解析 x, 我们获得,

    4 x 9 = 0 x = 9 4 = 2.25.

    ::4-9=0x=94=2.25。

    This is a fairly good approximation, since a calculator would give x = 2.23607 , lower by 0.014. We can actually make this approximation to the root of  f ( x )  even better by repeating what we have just done but using the latest estimate x 1 = 2.25 = 9 4 , a number that is even closer to the actual value of 5 .
    ::这是一个相当不错的近似值, 因为计算器会给出 x=2.23607, 低于 0.014 。 我们实际上可以通过重复我们刚才所做的, 来使f( x) 根的近似值更好, 但使用最新的估计值 x1= 2. 25=94, 这个数字更接近于实际值为 5 。

    f ( x ) = x 2 5 and f ( 2.25 ) = 1 16
    :sadxx)=x2-5和f(2.25)=116

    f ( x ) = 2 x  and f ( 2 ) = 9 2
    ::f_(x)=2x和f_(2)=92

    Using the linear approximation again,
    ::再次使用线性近似,

    f ( x ) f ( x 1 ) + f ( x 1 ) ( x x 1 ) 1 16 + 9 2 ( x 9 4 ) 9 2 x 161 16 .

    ::f(x) f(x1) +f*(x1)(x1)(x-x1) 116+92(x-94) 92x-16116。

    Solving for  x by setting f ( x ) = 0 , we obtain
    ::设置 f(x)=0, 溶解 x 的 f(x)=0, 我们获得

    x = x 2 = 161 72 = 2.23611

    ::x=x2=16172=2.23611

    which is an even better approximation than x 1 = 9 4 .
    ::比x1=94更接近。

    We could continue this process generating a better approximation to 5 , as shown in the table, where the last estimate approximates the correct answer to 5 places. Thank goodness for calculators!
    ::我们可以继续这一进程,从而更接近于5,如表所示,最后的估计接近于5个地方的正确答案。 感谢计算者!

    n
    ::n 内

    x n
    ::xn 进

    f ( x n )
    :sadfxn)

    f ( x n )
    ::f_( xn)

    f ( x n ) f ( x n )
    :sadfxn) f_(xn)

    x n f ( x n ) f ( x n )
    ::xn-f(xn) f_(xn)

    1

    2

    -1

    4

    -0.25

    2.25

    2

    2.25

    0.0625

    4.5

    0.01389

    2.23611

    3

    2.23611

    0.00019

    4.47222

    0.00004

    2.23607

    4

    2.23607

    --

    --

    --

    --

    This is the basic idea of Newton’s Method . Here is a summary of the method:
    ::这是牛顿方法的基本概念。 以下是方法摘要:

    1. Given the function f ( x ) , find f ( x ) .
      ::根据函数 f(x),请查找 f_(x) 。
    2. Estimate the first approximation, x 0 , to a solution of the equation f ( x ) = 0 . Use a graph to help in finding the first approximation if necessary (see Figure below).
      ::估计第一个近似值为x0, 以解析公式 f(x)=0。 必要时使用图表帮助寻找第一个近近近值(见下图)。
    3. Use the current approximation x n to find the next approximation, x n + 1 , by using the recursion relation.
      ::使用当前近似 xn 使用递归关系查找下一个近似 xn+1 。

    x n + 1 = x n f ( x n ) f ( x n ) .

    ::xn+1=xn-f(xn)f_(xn)xn。

    1. Repeat the previous step until the desired level of convergence occurs.
      ::重复前一步骤,直至达到预期的趋同水平。

    Note that in some cases, Newton’s Method does not converge .
    ::请注意,在一些情况下,牛顿的方法并不趋同。

    Examples
    ::实例

    Example 1
    ::例1

    Compare the solutions to f ( x ) = 5 x 2 + 7 x 52  in the interval [2, 3] from using the Quadratic formula and using Newton’s Method.
    ::将使用二次曲线公式和使用牛顿方法的(x)=5x2+7x-52的间隔[2, 3]中的 f(x)=5x2+7x-52的解决方案比较。

    The function is shown in the figure.
    ::函数在图中显示。

    For f ( x ) = 5 x 2 + 7 x 52 = 0 , use of the quadratic formula gives the exact solution  x = 2.6 in the interval.
    ::对于 f(x) = 5x2+7x-52=0, 使用四方形公式给出准确的溶液x=2.6 间隔。

    lesson content

    Use of Newton’s Method with an initial estimate of x 0 = 3 , yields the results shown in the table.
    ::使用牛顿方法,初步估计为x0=3,得出表中所列结果。

    n
    ::n 内

    x n
    ::xn 进

    f ( x n )
    :sadfxn)

    f ( x n )
    ::f_( xn)

    f ( x n ) f ( x n )
    :sadfxn) f_(xn)

    x n f ( x n ) f ( x n )
    ::xn-f(xn) f_(xn)

    1

    3

    14

    37

    0.3784

    2.6216

    2

    2.6216

    0.7151

    33.216

    0.0215

    2.6001

    3

    2.6001

    0.0033

    33.001

    0.0001

    2.6000

    4

    2.6000

    --

    --

    --

    --

    The technique rapidly converges to a solution.
    ::技术迅速趋于一致,找到解决办法。

    Example 2
    ::例2

    Use Newton’s method to find the roots of the polynomial f ( x ) = x 3 + x 1 .
    ::使用 牛顿 的方法来查找 monnomilal f( x) =x3+x-1 的根根 。

    The problem is to solve the equation f ( x ) = x 3 + x 1 = 0 .
    ::问题是解决f(x)=x3+x- 1=0的方程式。

    The equations we need are:
    ::我们需要的方程式是:

    f ( x ) = x 3 + x 1
    :sadxx)=x3+x-1)

    f ( x ) = 3 x 2 + 1 .
    ::f_(x) = 3x2+1 。

    Using the recursion relation,
    ::使用循环关系,

    x n + 1 = x n f ( x n ) f ( x n ) = x n x n 3 + x n 1 3 x n 2 + 1 .

    ::xn+1=xn-f(xn)f_(xn)=xn-xn3+xn-13xn2+1。

    To help us find the first approximation, we make a graph of f ( x ) . As the figure suggests, set x 1 = 0.6 .
    ::为了帮助我们找到第一个近似值, 我们绘制一个 f( x) 的图形。 如图所示, 设置 x1=0. 6 。

    lesson content

    Then using the recursion relation, we can generate x 1 :
    ::然后使用循环关系, 我们可以生成x1 :

    x n + 1 = x n x n 3 + x n 1 3 x n 2 + 1 x 2 = 0.6 ( 0.6 ) 3 + ( 0.6 ) 1 3 ( 0.6 ) 2 + 1 = 0.6884615.

    ::xn+1=xn-xn3+xn-13xn2+1x2=0.6-(0.6)3+(0.6)-13(0.6)2+1=0.6884615。

    By using the recursion relation several times, we can find  x 3 and  x 4 as shown in the table.
    ::通过多次使用递归关系,我们可以找到表所示的 x3 和 x4 。

    n
    ::n 内

    x n
    ::xn 进

    f ( x n )
    :sadfxn)

    f ( x n )
    ::f_( xn)

    f ( x n ) f ( x n )
    :sadfxn) f_(xn)

    x n f ( x n ) f ( x n )
    ::xn-f(xn) f_(xn)

    1

    0.6

    -0.184

    2.08

    -0.0884615

    0.6884615

    2

    0.6884615

    0.01477796

    2.4219377

    0.0061017

    0.6823598

    3

    0.6823598

    0.00007669

    2.3968445

    0.0000320

    0.6823278

    4

    0.6823278

    --

    --

    --

    --

    We conclude that the solution to the equation  x 3 + x 1 = 0 is about 0.6823.
    ::我们的结论是,公式x3+x-1=0的解决方案约为0.6823。

    Example 3
    ::例3

    Use Newton’s Method to show to find the root of f ( x ) = cos ( 2 x ) x .
    ::使用 牛顿 的 方法来显示 f( x) = cos *( 2x) - x 的根 。

    The equations we need are:
    ::我们需要的方程式是:

    f ( x ) = cos ( 2 x ) x
    :sadxx) =cos(2x)-x

    f ( x ) = 2 sin ( 2 x ) 1
    :sadxx)%2sin(2x)- 1

    Using the recursion relation,
    ::使用循环关系,

    x n + 1 = x n f ( x n ) f ( x n ) = x n cos ( 2 x n ) x n 2 sin ( 2 x n ) 1

    ::xn+1=xnf( xn) f*( xn) =xn-cos *( 2xn)-xn-2sin *( 2xn)- 1

    To help us find the first approximation, we make a graph of f ( x ) . As the figure suggests, set the first estimate at 0.5.
    ::为了帮助我们找到第一个近似值,我们绘制一个f(x)的图表。如图所示,将第一个估计数定为0.5。

    lesson content

    Using the recursion relation several times gives the table values:
    ::使用递归关系多次给出表格值:

    n
    ::n 内

    x n
    ::xn 进

    f ( x n )
    :sadfxn)

    f ( x n ) f ( x n )
    :sadfxn) f_(xn)

    1

    0.500000

    0.0403023

    -0.0152168

    2

    0.515022

    -0.0002400

    0.0000884

    3

    0.514933

    -0.0000000

    0.0000000

    4

    0.514933

    --

    --

    We conclude that the solution to the equation  cos ( 2 x ) x = 0 is 0.514933.
    ::我们的结论是,对等方程的解决方案为0.514933,cos(2x)-x=0。

    Review
    ::回顾

    For all the problems, use Newton’s Method to find the roots.
    ::使用牛顿的方法找出根源。

    1. x 3 + 3 = 0 .
      ::x3+3=0。
    2. x + 3 1 + x = 0 .
      ::-x+3-1+x=0。
    3. 4 x 2 x 2 in the interval [-1, 0].
      ::间距[-1,0]4x2-x-2。
    4. 4 x 3 6 x 2 1 .
      ::4x3 - 6x2 - 1;
    5. 5 e x + x 3 .
      ::5 e- x+x3 。
    6. cos x x .
      ::xxxx。
    7. x 5 7 x 2 + 2 in the interval [-1, 0].
      ::间隔[-1,0] x5-7x2+2。
    8. x 5 7 x 2 + 2 in the interval [0, 1].
      ::x5-7x2+2 间隔 [0, 1] 。
    9. x 2 cos x x in the interval [4, 5].
      ::间隔内 x2cosx-x [4, 5] 。
    10.   x 2 cos x x in the interval [7, 8].
      ::间隔中的 x2cosx-x [7、8] 。
    11. f ( x ) = x 2 sin ( x ) to five decimal places, starting with initial guess x 0 = 3 .
      ::f(x) =x- 2sin(x) 到小数点后五位位数, 从最初的猜测x0=3开始 。
    12. f ( x ) = 6 x 3 4 x + 1 to three decimal places, starting with initial guess x 0 = 1.2 .
      ::f(x) = 6x3 - 4x+1 到小数点后三位位数, 从初始猜数x0=1.2开始 。
    13. f ( x ) = ln ( x ) × ( ln ( x ) + 4 ) + 1 to five decimal places, starting with initial guess x 0 = 1 .
      ::f(x) = ln (x) ×(ln (x)+4)+1 到小数点后五个位数, 从最初的猜测x0=1开始 。
    14. f ( x ) = tan ( x ) csc ( x ) to six digits of accuracy, starting with initial guess x 0 = 0.7 .
      ::f(x)=tan(x)-csc(x)至精度的六位数,从最初的猜测x0=0.7开始。
    15. f ( x ) = tan 1 ( x ) + cos ( x ) to four digits of accuracy, starting with initial guess x 0 = 2 .
      ::f(x) = tan- 1(x) +cos(x) 至 4 位数的精确度, 从初始猜数 x02 开始 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。