章节大纲

  • lesson content

    The language club is fundraising for a trip to study art and architecture in Paris next summer. They have raised $3,500 from helping the community and $4,800 from various donors. They need a total of $12,300 to subsidize the educational trip. Can you write an equation to solve for how much more they need to raise, and then find out that amount?
    ::语言俱乐部正在为明年夏天在巴黎的艺术和建筑学习之旅筹集资金。 他们从帮助社区募集了3,500美元,从各捐助方募集了4,800美元。 他们总共需要12,300美元来补贴教育之旅。 你能写一个方程式来解决他们需要筹集多少,然后找出这笔金额吗?

    In this concept, you will learn to solve single variable addition equations.
    ::在此概念中,您将学会解析单变量添加方程式。

    Solving Single Variable Addition Equations
    ::解决单变量增加等量

    A variable is used to represent a number, quantity, or expression .
    ::变量用于表示数字、数量或表达式。

    For example, in the algebraic equation below, the variable x  represents one possible number.
    ::例如,在下面的代数方程式中,变量x代表一个可能的数字。

    x + 3 = 5

    ::x+3=5 x+3=5

    To find out what number x  represents, ask yourself, “What number, when added to 3, equals 5?”
    ::要知道数字x代表什么,请问您自己,“如果加上3,数字是5,数字是多少?”

    2 + 3 = 5 , so x  must be equal to 2.
    ::2+3=5, 所以x必须等于 2 。

    When solving more complex equations, such as x + 34 = 72 , it is important to be more systematic and strategic.
    ::在解决更复杂的方程式,如x+34=72时,必须更加系统和战略性。

    To solve an equation you should work to isolate the variable . Isolating the variable means getting the variable by itself on one side of the equal ( = ) sign.
    ::要解析方程式, 您应该工作孤立变量。 孤立变量意味着在等号( =) 的一边获得变量 。

    One way to isolate the variable is to use an inverse operation , that is, the ‘opposite’ operation . For example, addition is the inverse of subtraction , subtraction is the inverse of addition, multiplication is the inverse of division , and division is the inverse of multiplication.
    ::孤立变量的一种方法是使用反向操作,即“对面”操作。例如,加法是减法的反反向,减法是反向,乘法是反向的,乘法是反向的,除法是反向的,而除法是反向的乘法。

    To solve an equation in which a variable is added to a number, you can use the inverse of addition––subtraction.
    ::要解析将变量添加到数字中的方程式, 您可以使用反向的增- 减- 减- 减 。

    To do this you need to use the Subtraction Property of Equality , which states: if a = b , then a c = b c .
    ::要做到这一点,你需要使用平等减法财产,其中规定:如果a=b,a-c=b-c。

    This means that if you subtract a number, c , from one side of an equation, you must subtract that same number, c , from the other side, too, to keep the values on both sides equal.
    ::这意味着,如果从公式的一面减去一个数字,c,则必须从另一面减去同一个数字,c,以保持双方的数值相等。

    Let’s look at an example.
    ::让我们举个例子。

    Solve for x .
    ::解决x。

    x + 34 = 72
    ::x+34=72

    Use the subtraction property of equality to subtract 34 from both sides of the equation. This will isolate the variable x .
    ::使用等值的减法属性从方程两侧减去34。这将分离变量 x。

    x + 34 = 72 x + 34 34 = 72 34 x + 0 = 38 x = 38
    The answer is x = 38 .
    ::x+34=72x+34-34=72-34x+038x=38 回答是 x=38。

    Here is another example.
    ::下面是另一个例子。

    Solve for b .
    ::解决b.

    1.5 + b = 3.5
    ::1.5+b=3.5

    In the equation, 1.5 is added to b . So, use the subtraction property of equality and subtract 1.5 from both sides of the equation to solve for b .
    ::b. 因此,使用等值减法属性,减去公式两侧的1.5,解决b。

    1.5 + b = 3.5 1.5 1.5 + b = 3.5 1.5 0 + b = 2.0 b = 2
    The answer is b = 2 .
    ::1.5+b=3.51.5-1.5+b=3.5-1.50+b=2.0b=2 答案是b=2。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about the language club, who is going to study art and architecture in Paris.
    ::早些时候,你被问及语言俱乐部的问题, 他将在巴黎学习艺术和建筑。

    They have raised $3,500 from one source and $4,800 from another. However, they need a total of $12,300 for the educational trip. Write an equation to solve for how much more they need to raise.
    ::他们从一个来源筹集了3,500美元,从另一个来源筹集了4,800美元,然而,他们需要总共12,300美元用于教育旅行。 写一个方程式以解决他们需要筹集多少资金的问题。

    First, let x  be how much money the students still need to raise.
    ::首先,让我们先看看学生们还需要筹集多少钱。

    Next, you need to translate the language into a mathematical equation. Add up all of the funding plus what they still need to raise, x , and set that equal to the total amount needed.
    ::接下来, 您需要将语言转换为数学等式 。 添加所有资金加上他们仍需要筹集的资金, x, 并设定与所需总额相等 。

    3 , 500 + 4 , 800 + x = 12 , 300

    ::3 500+4 800+x=12 300

    Next, add the numbers together.
    ::下一步,将数字加在一起。

    8 , 300 + x = 12 , 300

    ::8 300+x=12 300美元

    Now, use the subtraction property of equality to subtract 8,300 from both sides of the equation. This isolates the variable x .
    ::现在,使用等值的减法属性从方程的两侧减去8,300美元。这将变量 x 分离出来。

    8 , 300 8 , 300 + x = 12 , 300 8 , 300 x = 4 , 000

    ::8,300-8,300,300+x=12,300-8,300x=4,000

    The answer is the students still need to raise $4,000.
    ::答案是学生仍需要筹募4000美元。

    Example 2
    ::例2

    The number of gray tiles in a bag is 4 more than the number of blue tiles in the bag. There are 11 gray tiles in the bag.
    ::袋子中的灰砖数比袋子中的蓝砖数多4个,袋子中有11个灰砖。

    Write an equation to represent b , the number of blue tiles in the bag, and then find the value of b .
    ::写一个方程式以表示 b, 包中蓝色瓷砖的数, 然后找到 b 的值 。

    First, translate the language into a mathematical equation. “Is means equals, b  is the number of blue tiles, and there are 11 gray tiles.
    ::首先,将语言翻译成数学等式。“是”的意思是等同的,b是蓝色瓷砖的数量,有11块灰砖。

    The   number of gray tiles _ is 4 more than _   the  number of blue tiles _                   11 = 4     +   b
     
    ::灰色瓷砖的数_... 是蓝色瓷砖的数_ 4 大于_ 蓝色瓷砖的数_... @ @ @ @ @ @ @ @ @ @ @ @ @11=4+b

    So the equation is 11 = 4 + b .
    ::等式是11=4+b。

    Solve the equation to find the number of blue tiles in the bag. Use the subtraction property of equality, and subtract 4 from each side of the equation. This isolates the variable.
    ::解析方程式以在包中找到蓝色瓷砖的数量。 使用等式的减法属性, 然后从方程式的每侧减去 4 。 这样可以分离变量 。

    11 = 4 + b 11 4 = 4 4 + b 7 = 0 + b 7 = b

    ::11=4+B11-4=4-4-4-4+B7=0+B7=b

    The answer is there are 7 blue tiles in the bag.
    ::答案是袋子里有七块蓝色瓷砖

    Solve each addition equation for the missing variable.
    ::解决缺失变量的每个添加方程式 。

    Example 3
    ::例3

    x + 36 = 90
    ::x+36=90

    Use the subtraction property of equality and subtract 36 from both sides of the equation. This isolates the variable x .
    ::使用等值减法的减法属性,从方程两侧减去36。此选项将变量 x 分离出来。

    x + 36 = 90 x + 36 36 = 90 36 x + 0 = 54 x = 54

    ::x+36=90x+36=36=90-36=36x+054x=54

    The answer is  x = 54 .
    ::答案是 x=54 。

    Example 4
    ::例4

    x + 27 = 35
    ::x+27=35

    Use the subtraction property of equality and subtract 27 from both sides of the equation. This isolates the variable x .
    ::使用等值减法的减法属性,从方程两侧减去27。此选项将变量 x 分离出来。

    x + 27 = 35 x + 27 27 = 35 27 x = 8

    ::x+27=35x+27=27=35-27x=8

    The answer is  x = 8 .
    ::答案是 x=8 。

    Example 5
    ::例5

    y + 1.7 = 6.5
    ::y+1.7=6.5 y+1.7=6.5

    Use the subtraction property of equality and subtract 1.7 from both sides of the equation. This isolates the variable y .
    ::使用等值减法的减法属性,从方程两侧减去1.7。此选项将变量 y 分隔开。

    y + 1.7 = 6.5 y + 1.7 1.7 = 6.5 1.7 y = 4.8

    ::y+1.7=6.5y+1.7-1.7=6.5-1.7y=4.8 y+6.5y+1.7-1.7=6.5-1.7y=4.8

    The answer is  y = 4.8 .
    ::答案是y=4.8

    Review
    ::回顾

    Solve each single-variable addition equation.
    ::解决每个单变量附加方程式。

    1. x + 7 = 14  
      ::x+7=14 x7=14
    2. y + 17 = 34
      ::y+17=34
    3. a + 27 = 34
      ::a+27=34
    4. x + 30 = 47
      ::x+30=47
    5. x + 45 = 53
      ::x+45=53
    6. x + 18 = 24
      ::x+18=24
    7. a + 38 = 74
      ::a +38=74
    8. b + 45 = 80
      ::b+45=80
    9. c + 54 = 75
      ::c+54=75
    10. y + 197 = 423
      ::y+197=423 y+197=423
    11. y + 297 = 523
      ::y+297=523
    12. y + 397 = 603
      ::y+397=603
    13. y + 97 = 405
      ::y+97=405
    14. y + 94 = 102
      ::y+94=102 y+94=102
    15. y + 87 = 323
      ::y+87=323 y+87=323

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源