章节大纲

  • lesson content

    Casey missed three days of school this week because of a nasty cold. When he returned to school on Thursday he asked his math teacher what he had missed. Miss Brown wrote a problem on a sheet of paper and handed it to Casey. When he arrived home from school Casey looked at his homework which was the following problem:
    ::凯西因为感冒而错过了本周的三天学校。当他星期四回到学校时,他问数学老师他错过了什么。布朗小姐在一张纸上写了一个问题,并把它交给凯西。当他从学校回家的时候,凯西看了他的作业,这是下面的问题:

    5 4 + ( 2 ) 4 + 12

    Casey didn’t know what to do with 5 4 and ( 2 ) 4 . How can he rewrite the problem so that he understands what operations to perform?
    ::凯西不知道与54和(-2)4有什么关系。 他如何重写问题,以便他了解要执行什么行动?

    In this concept, you will learn how to evaluate numerical expressions involving powers.
    ::在此概念中,您将学会如何评价涉及权力的数字表达式。

    Evaluating Expressions Involving Powers
    ::评价涉及权力方的表达方式

    A numerical expression is an expression made up only of numbers and operations but an expression written with a variable in it, is called a variable expression .
    ::数字表达式是一个仅由数字和操作组成的表达式,但其中写有变量的表达式则称为变量表达式。

    Both a numerical expression and a variable expression can include powers.
    ::数字表达式和变量表达式都可以包括权力。

    A power is the result of multiplying a number by itself one or more times. The number 16 is the fourth power of 2.
    ::一个功率是数字本身乘以一个或多个倍的结果。数字 16 是 2 的第四功率 。

    2 × 2 × 2 × 2 = 16 . The ‘fourth power of 2’ or ‘2 to the power of 4’ can be written as 2 4 . The number raised to the power is called the base and the number expressing the power is called the exponent . The exponent tells you how many times to multiply the base times itself. 6 3 = 6 × 6 × 6 .
    ::2x2x2xx2=16。 ` 2 或 ' 2 到 4 ' 的第四功率可以写为 24. 向该功率提出的数字称为基数,表示该功率的号码称为推算数。 推算数告诉你乘基数本身多少倍。 63= 6x6x6x6 。

    Let’s look at an example.
    ::让我们举个例子。

    Evaluate the following expression: 
    ::评价以下表述:

    6 3 + 5 2 + 25

    First, expand the powers to see the operations you need to perform. 
    ::首先,扩大权力范围,看您需要执行的操作。

    6 3 = 6 × 6 × 6   and   5 2 = 5 × 5
    Next, write the expression in expanded form
    ::63=6x6x6 和 52=5x5 next, 以扩展格式写入表达式 。

    6 × 6 × 6 + 5 × 5 + 25

    Next, apply the order to operations (PEMDAS) to evaluate the expanded expression.
    ::下一步,对操作( PEMDAS) 应用此命令来评价扩展表达式 。

    Then, in order from left to right, multiply:  6 × 6 = 36 × 6 = 216 and write the new expression.
    ::然后,按照从左到右的顺序,乘以:6x6=36x6=216,并写下新的表达式。

    216 + 5 × 5 + 25

    Then, multiply: 5 × 5 = 25  and write the new expression.
    ::然后,乘以: 5x5=25 然后写新表达式 。

    216 + 25 + 25

    Next, from left to right, add: 216 + 25 = 241 and write the new expression.
    ::下, 从左到右, 添加: 216+25=241, 并写入新表达式 。

    241 + 25

    Then, add: 241 + 25 = 266
    ::然后加上:241+25=266

    The answer is 266.
    ::答案是266

    Let’s look at another example.
    ::让我们再看看另一个例子。

    6 2 + 15 + 3 3 11

    First, expand the powers to see the operations you need to perform. 
    ::首先,扩大权力范围,看您需要执行的操作。

    6 2 = 6 × 6   and   3 3 = 3 × 3 × 3

    ::62=6x6和33=3x3x3x3

    Next, write the expression in expanded form.
    ::下一步,用扩展格式写出表达式。

    6 × 6 + 15 + 3 × 3 × 3 11

    Next, apply the order to operations (PEMDAS) to evaluate the expanded expression.
    ::下一步,对操作( PEMDAS) 应用此命令来评价扩展表达式 。

    Then, in order from left to right multiply:  6 × 6 = 36 and write the new expression.
    ::然后,按照从左到右的顺序乘以: 6x6=36, 并写下新的表达式 。

    36 + 15 + 3 × 3 × 3 11

    Then, multiply: 3 × 3 × 3 = 27 and write the new expression. 
    ::然后,乘以:3x3x3x3=27, 并写下新表达式 。

    36 + 15 + 27 11

    Next, from left to right, add:  36 + 15 = 51 and write the new expression.  
    ::接下来,从左到右,加上:36+15=51,并写下新表达式。

    51 + 27 11

     Then, add: 51 + 27 78 and write the new expression.
    ::然后,加上:51+27-78 并写下新表达式。

    78 11

    Next, subtract: 78 11 = 67
    ::下一步,减去:78-11=67

    The answer is 67.
    ::答案是67。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  Casey and his confusing homework.
    ::早些时候,你得到一个问题 凯西和他令人困惑的作业。

    Casey needs to expand the powers so he can see what operations he has to do to evaluate the expression.
    ::凯西需要扩大权力范围 这样他才能看清 他必须做什么行动来评价表达方式

    First, evaluate the two powers given in the problem.
    ::首先,评估这一问题中赋予的两项权力。

    5 4 = 5 × 5 × 5 × 5 = 625   and   ( 2 ) 4 = 2 × 2 × 2 × 2 = 16

    ::54=5x5x5x5=625和(-2)42222×2=16

    Next, replace the powers in the expression with their values. 
    ::接下来,将表达式中的权力替换为它们的值。

    625 + 16 + 12
    Then, add.
    ::625+16+12 然后,添加。

    625 + 16 = 641 + 12 = 653

    The answer is 653.
    ::答案是653

    Example 2
    ::例2

    Evaluate the following variable expression when x = 4
    ::评估以下变量表达式时x=4 。

    2 x 3 12
    ::2x3-12

    First, substitute the value  x = 4 into the expression.
    ::首先,将值 x=4 替换为表达式。

    2 ( 4 ) 3 12

    Next, expand the power.
    ::下一个,扩展电源。

    ( 4 ) 3 = ( 4 × 4 × 4 )
    Next, write the expression in expanded form.
    :伤心4)3=( 4x4x4) 下一步, 以扩展格式写入表达式 。

    2 ( 4 × 4 × 4 ) 12

    Then, perform the operation in the parenthesis.
    ::然后在括号里做手术

    Multiply: 4 × 4 = 16 × 4 = 64 and write the new expression.
    ::乘以: 4x4=16x4=64, 并写入新表达式 。

    2 ( 64 ) 12

    Next, multiply:  2 ( 64 ) = 128 and write the new expression.
    ::下一步,乘以:2(64)=128,并写下新表达式。

    128 12

    Then, subtract.
    ::然后,减。

    128 12 = 116

    The answer is 116.
    ::答案是116

    Example 3
    ::例3

    Evaluate the following numerical expression.
    ::评估以下数字表达式。

    20 2 4 + 1 + 3 3

    First, expand the powers. 
    ::首先,扩大权力。

    2 × 2 × 2 × 2   and   3 × 3 × 3
     
    ::2x2x2x2和3x3x3x3

     Next, write the expression in expanded form. 
    ::下一步,用扩展格式写出表达式。

    20 2 × 2 × 2 × 2 + 1 + 3 × 3 × 3

    Then, in order from left to right multiply:  2 × 2 × 2 × 2 = 16 and write the new expression.
    ::然后,按照从左到右的顺序乘以: 2x2xx2xx2xx2=16, 并写下新的表达式 。

    20 16 + 1 + 3 × 3 × 3

    Next, multiply:  3 × 3 × 3 = 27  and write the new expression.
    ::下一个, 乘以: 3x3x3=27, 并写入新表达式 。

    20 16 + 1 + 27

    Then, in order from left to write, subtract:  20 16 = 4  and write the new expression.
    ::然后,按照左边的顺序写,减去:20-16=4,并写下新的表达式。

    4 + 1 + 27

    Next, add:  4 + 1 = 5 and write the new expression.
    ::下加: 4+1=5, 并写下新表达式 。

    5 + 27

    Then add:  5 + 27 = 32
    ::然后加上:5+27=32

    The answer is 32.
    ::答案是32个

    Example 4
    ::例4

    Evaluate the following variable expression when  m = 3 and n = 2
    ::当 m=3andn=2 时, 评估以下变量表达式 。

    n 5 + 3 m 2 15

    ::n5+3m2-15

    First, substitute  m = 3 and n = 2 into the variable expression.
    ::首先,将 m=3andn=2 替换为变量表达式。

    2 5 + 3 ( 3 ) 2 15
    Next, expand the powers:
    2 5 = ( 2 × 2 × 2 × 2 × 2 )   and   ( 3 ) 2 = ( 3 × 3 )

    ::25+3(3)2- 15 next, 扩展权力范围: 25=( 2x2x2x2x2x2) 和 (3)2=( 3x3)

    Then, write the expression in expanded form.
    ::然后,用扩展的形式写出表达式。

    2 × 2 × 2 × 2 × 2 + 3 ( 3 × 3 ) 15

    Then, perform the operation in the parenthesis.
    ::然后在括号里做手术

    First, multiply:  ( 3 × 3 ) = ( 9 ) and write the new expression.
    ::首先,乘以( 3x3) =( 9) 并写入新表达式 。

    2 × 2 × 2 × 2 × 2 + 3 ( 9 ) 15

    Next, multiply:  3 ( 9 ) = 27 to clear the parenthesis. Write the new expression.
    ::下一个, 乘以 3( 9) = 27 来清除括号。 写入新表达式 。

    2 × 2 × 2 × 2 × 2 + 27 15

    Next, multiply:   2 × 2 = 4 × 2 = 8 × 2 = 16 × 2 = 32 Write the new expression.
    ::下一个, 乘以: 2x2=4x2=8x2=8x2=16x2=32 写下新表达式 。

    32 + 27 15

    Next, add:  32 + 27 = 59 and write the new expression. 
    ::下加: 32+27=59 并写下新表达式 。

    59 15
    Then, subtract:  59 15 = 44
    ::59- 15 然后, 减去: 59- 15= 44

    The answer is 44.
    ::答案是44

    Review
    ::回顾

    Expand and evaluate each power.
    ::扩大并评估每个力量。

    1.  3 3

    2.  4 2

    3.  ( 2 ) 4

    4.  ( 8 ) 2

    5.  5 3

    6.  2 6

    7.  ( 9 ) 2

    8.  ( 2 ) 6

    Evaluate each numerical expression. Remember to apply PEMDAS to evaluate the expression accurately.
    ::评估每个数字表达式。 记住应用 PEMDAS 来准确评价表达式 。

    9.  6 2 + 22

    10.  ( 3 ) 3 + 18

    11.  2 3 + 16 4

    12.  ( 5 ) 2 19

    13.  ( 7 ) 2 + 52 2

    14.  18 + 9 2 3

    15.  22 3 3 + 7

    Evaluate each variable expression using the given values.
    ::使用给定值评价每个变量表达式。

    16. 6 a + 4 2 2 , when  a = 3
    ::16.a+42-2,a=3时

    17.  a 3 + 14 ,  when  a = 6.
    ::a3+14, 当 a=6时。

    18.  2 a 2 16 ,  when  a = 4
    ::18. A=4时2a2-16

    19.  5 b 3 + 12 ,  when  b = - 2
    ::19. 5b3+12, b=-2

    20.  2 x 2 + 52 ,  when  x = 4
    ::20. 2x2+52,x=4

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

     

    Resources
    ::资源