2.9 平方根和不合理数字
章节大纲
-
Square Roots and Irrational Numbers
::平方根和不合理数字The square root of a number is a number which, when multiplied by itself, gives the original number. In other words, if , we say that is the square root of .
::数字的平方根是一个数字,当数字本身乘以时,就会给出原始数字。换句话说,如果a=b2,我们说b是a的平方根。Note: Negative numbers and positive numbers both yield positive numbers when squared , so each positive number has both a positive and a negative square root. (For example, 3 and -3 can both be squared to yield 9.) The positive square root of a number is called the principal square root .
::注:负数和正数在平方时均产生正数,因此每个正数都有正数和负平方根。 (例如,3和-3均可平方得出9。 )一个数字的正平方根被称为主要平方根。The square root of a number is written as or sometimes as . The symbol is sometimes called a radical sign .
::数字 x 的平方根以 x 写成,有时以 x2 写成。 符号有时被称为激进符号。Numbers with whole-number square roots are called perfect squares . The first five perfect squares (1, 4, 9, 16, and 25) are shown below.
::有整数平方根的数字称为完美平方,前五个完美的平方(1、4、9、16和25)如下所示。You can determine whether a number is a perfect square by looking at its prime factors . If every number in the factor tree appears an even number of times, the number is a perfect square. To find the square root of that number, simply take one of each pair of matching factors and multiply them together.
::您可以通过查看一个数字的质因数来确定数字是否为完美的正方形。 如果系数树中的每个数字出现偶数, 数字是一个正方形。 要找到该数字的平方根, 只需选择每对匹配系数中的一对, 然后将之相乘 。Finding the Principal Square Root
::寻找主方根Find the principal square root of each of these perfect squares.
::找到每一个完美的方块的主要平方根a) 121
:a) 121
, so .
::121=11x11, 所以121=11.b) 225
::b) 225, so .
::225=(5x5)x(3x3),225=5x3=15。c) 324
:c) 324
, so .
::324=(2x2)x(3x3)x(3x3)x(3x3),因此324=2x3x3=18。When the prime factors don’t pair up neatly, we “factor out” the ones that do pair up and leave the rest under a radical sign. We write the answer as , where is the product of half the paired factors we pulled out and is the product of the leftover factors.
::当主要因素不完美地对齐时,我们就“把配对的因素归结在一起 ” , 把其余的都留在一个激进的标志之下。 我们把答案写成 ab, 其中一种是一半配对因素的产物,我们拿出来,b 是剩余因素的产物。Finding the Principal Square Roots of Imperfect Squares
::寻找不完美广场的主平方根Find the principal square root of the following numbers.
::查找以下数字的主平方根。a) 8
:a) 8
. This gives us one pairs of 2's and one leftover 2, so .
::8=2x2x2x2。 这给我们一对2's和一对剩余2, 所以8=22。b) 48
:b) 48
, so , or .
::48=2x2xxxxxxxxxxxx3,48=2xx2xx3,或43。c) 75
:c) 75
, so .
::75=(5x5)×3, 所以75=53。Note that in the last example we collected the paired factors first, then we collected the unpaired ones under a single radical symbol. Here are the four rules that govern how we treat square roots.
::请注意,在最后一个例子中,我们首先收集了配对因素,然后我们用一个单一的激进符号收集了未受重视的因素。这是制约我们如何对待正根的四项规则。-
::axb=AB -
::AaxBb=ABab -
::ab=ab -
::Aabb=ABab
Simplifying Square Roots
::简化平方根Simplify the following square root problems
::简化以下平方根问题a)
::a) 8x2b)
:b) 34×43
c)
:c) 12+3
d)
:d) 121065
Approximate Square Roots
::近近平方根Terms like and (square roots of prime numbers) cannot be written as . That is to say, they cannot be expressed as the ratio of two integers. We call them . In decimal form, they have an unending, seemingly random, string of numbers after the decimal point .
::像 2,3 和 7 这样的术语( 质数的平方根) 无法被写为 。 也就是说, 它们不能以两个整数之比表示 。 我们称之为 。 在小数表格中, 小数点之后, 它们有一个未结束的、 似乎随机的数字字符串 。To find approximate values for square roots, we use the or button on a calculator. When the number we plug in is a perfect square, or the square of a rational number , we will get an exact answer. When the number is a non-perfect square, the answer will be irrational and will look like a random string of digits. Since the calculator can only show some of the infinitely many digits that are actually in the answer, it is really showing us an approximate answer —not exactly the right answer, but as close as it can get.
::要找到正方根的近似值, 我们在计算器上使用 或 x 按钮 。 当我们插入的数字是一个完美的正方或正方数时, 我们会得到一个准确的答案。 当数字是一个不完美的正方形时, 答案将是不合理的, 并且看起来像一个随机的数字字符串。 因为计算器只能显示答案中的一些无限多的数字, 它确实向我们展示了一个大致的答案, 不是准确的正确答案, 而是尽可能接近的答案 。Using a Calculator
::使用计算器Use a calculator to find the following square roots. Round your answer to three decimal places.
::使用计算器查找以下的正方根。 将您的答复四舍五入到小数点后三位。a)
:a) 99
b)
::b) 5c)
:c) 0.5
d)
:d) 1.75
Examples
::实例Find the square root of each number.
::查找每个数字的平方根。Example 1
::例1576
, so
::576=(2x2)xxx(2x2)xxxxxx2xxxxxxxxx3, 所以 576=2xx2xx2x3=24Example 2
::例2216
, so , or .
::216=2x2x2x2x2x2xxxx3x3,216=2x3x2x3x3或66。Review
::回顾For 1-10, find the following square roots exactly without using a calculator , giving your answer in the simplest form.
::1-10, 在不使用计算器的情况下, 找到以下的正方根, 以最简单的形式给出答案 。-
(Hint: The division rules you learned can be applied backwards!)
::14 (提示: 您所学的分区规则可以被反向应用 !)
For 11-20, use a calculator to find the following square roots. Round to two decimal places.
::11 - 20, 使用计算器查找以下正方根。 小数点到小数点后两舍五入。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -