章节大纲

  • Horizontal and Vertical Line Graphs 
    ::水平和垂直线图

    How do you graph equations of horizontal and vertical lines? See how in the example below.
    ::您如何绘制水平线和垂直线的方程式? 请参见下面的例子 。

    “Mad-cabs” have an unusual offer going on. They are charging $7.50 for a taxi ride of any length within the city limits. Graph the function that relates the cost of hiring the taxi "> ( y ) to the length of the journey in miles ( x ) .
    ::“Mad-cabs”的报价不同寻常,他们向市内任何长的出租车收费7.50美元,将租用出租车的费用是的与行程的里程(x)联系起来。

    To proceed, the first thing we need is an equation . You can see from the problem that the cost of a journey doesn’t depend on the length of the journey. It should come as no surprise that the equation then, does not have x in it. Since any value of x results in the same value of y ( 7.5 ) , the value you choose for x doesn’t matter, so it isn’t included in the equation. Here is the equation:
    ::要继续,我们首先需要的是方程。你可以从一个问题中看到,旅程的成本并不取决于旅程的长度。那么,这个方程没有 x 并不令人惊讶。 由于x 的任何值都得出与 y( 7. 5) 相同的值, 因此您选择的 x 值并不重要, 所以它没有包括在方程中 。 这里的方程是:

    y = 7.5
    ::y=7.5 y=7.5

    The graph of this function is shown below. You can see that it’s simply a horizontal line.
    ::此函数的图示显示在下面。您可以看到它只是一条水平线。

    Any time you see an equation of the form “ y = constant ,” the graph is a horizontal line that intercepts the y axis at the value of the constant.
    ::当您看到“y=常数”形式的方程式时, 图形是一条水平线, 以常数的值截取 y- 轴 。

    Similarly, when you see an equation of the form x = constant, then the graph is a vertical line that intercepts the x axis at the value of the constant. (Notice that that kind of equation is a relation , and not a function, because each x value (there’s only one in this case) corresponds to many (actually an infinite number) y values.)
    ::同样,当您看到窗体 x= 常量的方程式时,图形是一条垂直线,以常量的值截取 x- 轴值。 (注意,这种方程式是一种关系,而不是函数,因为每个 x- 值(在此情况下只有一个)都对应许多 y- 值(实际上是一个无限的数字) y- 值 。)

    Plotting Graphs 
    ::绘图图图

    Plot the following graphs.
    ::绘制下图 。

    (a) y = 4
    :伤心a)y=4

    y = 4 is a horizontal line that crosses the y axis at 4.
    ::y=4 是一条水平线, 4 时横跨 y- 轴 。

    (b) y = 4
    :伤心b) y4

    y = 4 is a horizontal line that crosses the y axis at −4.
    ::y4 是一条横线, 横跨 y - 轴 的 y 4 。

    (c) x = 4
    :伤心c) x=4

    x = 4 is a vertical line that crosses the x axis at 4.
    ::x=4 是一条垂直线, 横跨 x - 轴 4 时的 x - 轴 。

    (d) x = 4
    :伤心d) x4

    x = 4 is a vertical line that crosses the x axis at −4.
    ::x4 是一条垂直线, 横跨 x - 轴 4 的 x - 轴 。

    Finding an Equation 
    ::查找等量

    Find an equation for the x axis and the y axis.
    ::查找 x - 轴和 y - 轴的方程式 。

    Look at the axes on any of the graphs from previous examples. We have already said that they intersect at the origin (the point where x = 0 and y = 0 ). The following definition could easily work for each axis.
    ::查看先前示例中任何图表的轴。 我们已经说过, 这些轴在来源处交叉( x=0 和 y=0 的点 ) 。 以下定义很容易为每个轴工作 。

    x axis: A horizontal line crossing the y axis at zero.
    ::x- 轴: 横线在零时横过 y- 轴。

    y axis: A vertical line crossing the x axis at zero.
    ::y-轴:一条垂直线在零时穿过 x-轴线。

    So using example 3 as our guide, we could define the x axis as the line y = 0 and the y axis as the line x = 0 .
    ::因此,以例3作为我们的指南, 我们可以将 x - 轴定义为 y=0 线, y - 轴定义为 x=0 线 。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Write the equation of the horizontal line that is 3 units below the x-axis .
    ::写入 X 轴下方3 个单位的水平线的方程式。

    The horizontal line that is 3 units below the x-axis will intercept the y-axis at y = 3 . No matter what the value of x, the y value of the line will always be -3. This means that the equations for the line is y = 3 .
    ::x 轴下方的 3 个单位的水平线将拦截 Y 轴 y 3 。 无论 x 值是多少, 该线的 y 值总是 - 3 。 这意味着该线的方程式是 y 3 。

    Review 
    ::回顾

    1. Write the equations for the five lines ( A through E ) plotted in the graph below.


      ::在下图中绘制五个行(A至E)的方程。

    For 2-10, use the graph above to determine at what points the following lines intersect.
    ::2-10时,使用上图确定在什么点上以下线交叉。

    1. A and E
      ::A和E
    2. A and D
      ::A和D
    3. C and D
      ::C和D
    4. B and the y axis
      ::B和y-轴
    5. E and the x axis
      ::E 和 x- 轴
    6. C and the line y = x
      ::C 和 y=x 线 y=x
    7. E and the line y = 1 2 x
      ::E 行 Y=12x
    8. A and the line y = x + 3
      ::A 和 y=x+3 线条
    9. B and the line y = 2 x
      ::B 和 y2x 线

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。