Section outline

  • Linear Inequalities in Two Variables 
    ::两个变量的线性不平等

    The general procedure for graphing inequalities in two variables is as follows:
    ::将不平等情况分为两个变数的一般程序如下:

    1. Re-write the inequality in slope-intercept form : y = m x + b . Writing the inequality in this form lets you know the direction of the inequality.
      ::以斜坡界面形式重写不平等:y=mx+b。 以这种形式写出不平等, 使您了解不平等的方向 。
    2. Graph the line of the equation y = m x + b using your favorite method (plotting two points, using and y intercept , using y intercept and another point, or whatever is easiest). Draw the line as a dashed line if the equals sign is not included and a solid line if the equals sign is included.
      ::使用您最喜欢的方法( 绘制两个点, 使用和 y- intercept, 使用 y- intercept 和另一个点, 或其它最简单的方法) 绘制 y = mx+b 等式的线条。 如果等号不包含, 则将线条画成虚线, 如果等号包含, 则绘制一条固线 。
    3. Shade the half plane above the line if the inequality is “ greater than .” Shade the half plane under the line if the inequality is “ less than .”
      ::如果不平等性“大于”的话,将线上的半平面遮盖起来。 如果不平等性“低于”的话,则将线下的半平面遮盖起来。

    Graphing Inequalities 
    ::不平等图表

    1. Graph the inequality y 2 x 3 .
    ::1. 图1. 不平等 y2x-3。

    The inequality is already written in slope-intercept form, so it’s easy to graph. First we graph the line y = 2 x 3 ; then we shade the half-plane above the line. The line is solid because the inequality includes the equals sign.
    ::不平等已经以斜坡界面形式写成,因此很容易图形化。 首先,我们绘制了 y=2x-3 的线条; 然后,我们在线上方的半平面上阴影。 这条线是牢固的, 因为不平等包含等号 。

    2. Graph the inequality 5 x 2 y > 4 .
    ::2. 图5x-2y>4的不平等情况。

    First we need to rewrite the inequality in slope-intercept form:
    ::首先,我们需要重写斜坡界面的不平等:

    2 y > 5 x + 4 y < 5 2 x 2

    ::-2y=5x+4y<52x-2

    Notice that the inequality sign changed direction because we divided by a negative number.
    ::请注意,不平等标志改变了方向,因为我们除以负数。

    To graph the equation, we can make a table of values:
    ::要绘制方程图,我们可以绘制一个数值表:

    x y
    -2 5 2 ( 2 ) 2 = 7
    0 5 2 ( 0 ) 2 = 2
    2 5 2 ( 2 ) 2 = 3

    After graphing the line, we shade the plane below the line because the inequality in slope-intercept form is less than . The line is dashed because the inequality does not include an equals sign.
    ::在绘制线条图后,我们将线线下方的平面蒙上阴影,因为斜坡截面的不平等性小于线条。这条线被冲破,因为不平等性不包括等号。

    Solve Real-World Problems Using Linear Inequalities
    ::利用线性不平等解决现实世界问题

    In this section, we see how linear inequalities can be used to solve real-world applications.
    ::在本节中,我们看到如何利用线性不平等解决现实世界的应用问题。

    Real-World Application: Coffee Beans 
    ::真实世界应用程序:咖啡豆

    A retailer sells two types of coffee beans. One type costs $9 per pound and the other type costs $7 per pound. Find all the possible amounts of the two different coffee beans that can be mixed together to get a quantity of coffee beans costing $8.50 or less.
    ::零售商出售两种咖啡豆,一种每磅9美元,另一种每磅7美元。 找出两种不同的咖啡豆的所有可能数量,这两种咖啡豆可以混合在一起,以获得一定数量的咖啡豆,价格为8.50美元或更少。

    Let x = weight of $9 per pound coffee beans in pounds.
    ::重量为每磅咖啡豆9美元(磅)。

    Let y = weight of $7 per pound coffee beans in pounds.
    ::每磅咖啡豆7美元的重量 以磅为单位

    The cost of a pound of coffee blend is given by 9 x + 7 y .
    ::1磅混合咖啡的费用由9x+7y支付。

    We are looking for the mixtures that cost $8.50 or less. We write the inequality 9 x + 7 y 8.50 .
    ::我们正在寻找花费8.50美元或更少的混合物。 我们写下不平等 9x+7y8.50。

    Since this inequality is in standard form , it’s easiest to graph it by finding the x and y intercepts . When x = 0 , we have 7 y = 8.50 or y = 8.50 7 1.21 . When y = 0 , we have 9 x = 8.50 or x = 8.50 9 0.94 . We can then graph the line that includes those two points.
    ::由于这种不平等是以标准形式呈现的,所以最容易通过查找 x- 和 y- intercuts 来图解它。 当 x=0 时, 我们有 7y= 8. 50 或 y= 850\ 1. 221 。 当 y= 0 时, 我们有 9x= 8. 50 或 x= 8. 50 或 x= 8. 50 n. 0. 94 。 然后我们可以绘制包含这两个点的直线 。

    Now we have to figure out which side of the line to shade. In y intercept form , we shade the area below the line when the inequality is “less than.” But in standard form that’s not always true. We could convert the inequality to y intercept form to find out which side to shade, but there is another way that can be easier.
    ::现在我们必须找出线的哪一边是阴暗线。 以y-inter-interform 的形式,当不平等“比不上 ” 时,我们将线下区域遮蔽。 但标准形式并不总是真实的。 我们可以将不平等转换成y-inter-inter-form 来找出阴暗的哪一边,但是还有另一种方法可以更容易一些。

    The other method, which works for any linear inequality in any form, is to plug a random point into the inequality and see if it makes the inequality true. Any point that’s not on the line will do; the point (0, 0) is usually the most convenient.
    ::另一种方法适用于任何形式的线性不平等,就是将一个随机点插进不平等中,看看它是否使不平等成为真实。 任何不在线的点都会这样做;点(0,0)通常是最方便的。

    In this case, plugging in 0 for x and y would give us 9 ( 0 ) + 7 ( 0 ) 8.50 , which is true. That means we should shade the half of the plane that includes (0, 0). If plugging in (0, 0) gave us a false inequality, that would mean that the solution set is the part of the plane that does not contain (0, 0).
    ::在此情况下, 插入 0 为 x 和 y 插入 0 将会给我们 9( 0)+7( 0)\\\ 850 , 这是正确的 。 这意味着我们应该遮盖包括 (0, 0) 的半平面。 如果插入 (0, 0) 给我们一个假的不平等, 这意味着设定的解决方案是平面中不包含 (0, 0) 的部分 。

    Notice also that in this graph we show only the first quadrant of the coordinate plane . That’s because weight values in the real world are always nonnegative, so points outside the first quadrant don’t represent real-world solutions to this problem.
    ::请注意,在本图中,我们只展示了坐标平面的第一个象限。 这是因为现实世界的重量值总是非负值,因此第一个象限以外的点并不代表这个问题的真实世界解决办法。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Julius has a job as an appliance salesman. He earns a commission of $60 for each washing machine he sells and $130 for each refrigerator he sells. How many washing machines and refrigerators must Julius sell in order to make $1000 or more in commissions?
    ::朱利叶斯拥有一个电器销售员的工作。 他每卖一台洗衣机挣60美元,每卖一台冰箱赚130美元。 朱利叶斯必须卖多少洗衣机和冰箱才能赚1000美元或以上?

    Let x = number of washing machines Julius sells.
    ::朱利叶斯卖的洗衣机数量

    Let y = number of refrigerators Julius sells.
    ::朱利叶斯卖的冰箱数量

    The total commission is 60 x + 130 y .
    ::总委员会为60x+130y。

    We’re looking for a total commission of $1000 or more, so we write the inequality 60 x + 130 y 1000 .
    ::我们想要的佣金总额超过1000美元, 所以我们写下不平等60x+130y1000。

    Once again, we can do this most easily by finding the x and y intercepts. When x = 0 , we have 130 y = 1000 , or y = 1000 30 7.69 . When y = 0 , we have 60 x = 1000 , or x = 1000 60 16.67 .
    ::我们再次通过查找 x - 和 y - intercuts 来更容易地做到这一点。 当 x=0, 我们有130y=1000, 或者y=10030\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    We draw a solid line connecting those points, and shade above the line because the inequality is “greater than.” We can check this by plugging in the point (0, 0): selling 0 washing machines and 0 refrigerators would give Julius a commission of $0, which is not greater than or equal to $1000, so the point (0, 0) is not part of the solution; instead, we want to shade the side of the line that does not include it.
    ::我们绘制一条连接这些点的坚实的线条,并在线上阴影,因为不平等是“更大的 ” 。 我们可以通过插入点(0,0 ) 来检查这一点:出售0台洗衣机和0台冰箱可以让朱利叶斯佣金为0美元,数额不大于或等于1000美元,因此,点(0,0)不是解决方案的一部分;相反,我们希望将不包括它的线的侧面遮盖起来。

    Notice also that we show only the first quadrant of the coordinate plane, because Julius’s commission should be non-negative.
    ::因为朱利叶斯的委员会应该是非负面的。

    Review 
    ::回顾

    Graph the following inequalities on the coordinate plane.
    ::图1 坐标平面上以下的不平等。

    1. y 4 x + 3
      ::y=4x+3 y=4x+3
    2. y > x 2 6
      ::yx2-6
    3. 3 x 4 y 12
      ::3x-44y12
    4. x + 7 y < 5
      ::x+7y <5
    5. 6 x + 5 y > 1
      ::6x+5y>1
    6. y + 5 4 x + 10
      ::y+5+4x+10
    7. x 1 2 y 5
      ::x- 12y5
    8. 6 x + y < 20
      ::6x+y <20
    9. 30 x + 5 y < 100
      ::30x+5y < 100
    10. Remember what you learned in the last chapter about families of lines.
      1. What do the graphs of y > x + 2 and y < x + 5 have in common?
        ::y> x+2 和 y < x+5 的图形有什么共同点 ?
      2. What do you think the graph of x + 2 < y < x + 5 would look like?
        ::您认为 x+2 <y < x+5 的图形看起来像什么 ?

      ::记住您在最后一章中学到的关于线条家族的内容。 y> x+2 和 y < x+5 的图形有什么共同之处? 您认为 x+2 < y < x+5 的图形会是什么样子 ?
    11. How would the answer to problem 6 change if you subtracted 2 from the right-hand side of the inequality?
      ::如果你从不平等的右侧减去2个,那么问题6的答案会如何改变呢?
    12. How would the answer to problem 7 change if you added 12 to the right-hand side?
      ::如果你在右手边加上12个,问题7的答案会如何改变?
    13. How would the answer to problem 8 change if you flipped the inequality sign?
      ::如果你翻转不平等标志 问题8的答案会如何改变呢?
    14. A phone company charges 50 cents per minute during the daytime and 10 cents per minute at night. Sketch a graph showing how many daytime minutes and nighttime minutes could you use in one week if you wanted to pay less than $20.
      ::电话公司在白天每分钟收费50美分,在晚上每分钟收费10美分。 绘制一个图表,显示如果你想支付不到20美元, 一周内可以使用多少日间分钟和夜间分钟。
    15. Suppose you are graphing the inequality y > 5 x .
      1. Why can’t you plug in the point (0, 0) to tell you which side of the line to shade?
        ::为何不能插上点(0,0),
      2. What happens if you do plug it in?
        ::如果你插进去会怎么样?
      3. Try plugging in the point (0, 1) instead. Now which side of the line should you shade?
        ::尝试插入点( 0, 1) 。 现在, 您应该对线的哪一侧进行阴影 ?

      ::假设您正在绘制不平等 y> 5x 的图。 为什么您不能插插插点( 0, 0) 来告诉你阴影线的哪一边? 如果您插插进去会怎么样? 请尝试插插点( 0, 1) 。 现在您应该插插到哪一边 ?
    16. A theater wants to take in at least $2000 for a certain matinee. Children’s tickets cost $5 each and adult tickets cost $10 each.
      1. If x represents the number of adult tickets sold and y represents the number of children’s tickets, write an inequality describing the number of tickets that will allow the theater to meet their minimum take.
        ::如果x代表售出的成人票数,y代表儿童票数,写一个不平等的字,说明允许剧院达到最低票价的票数。
      2. If 100 children’s tickets and 100 adult tickets have already been sold, what inequality describes how many more tickets of both types the theater needs to sell?
        ::如果100张儿童票和100张成人票已经售出,那么什么不平等可以说明剧院需要售出多少两种类型的票?
      3. If the theater has only 300 seats (so only 100 are still available), what inequality describes the maximum number of additional tickets of both types the theater can sell?
        ::如果剧院只有300张座位(所以现在只有100张),那么,什么不平等可以说明剧院可以出售的两种类型的额外票最多数量?

      ::一个剧院至少要为某一场婚礼购买2000美元。 儿童票每张要5美元,成人票每张要10美元。 如果x代表售出的成人票数,y代表儿童票数,那么写一个不平等的描述让剧院达到最低票数的票数。 如果100张儿童票和100张成人票已经售出,那么什么不平等描述剧院需要出售的两种类型的票数?如果剧院只有300张座位(因此只有100张),那么什么不平等描述剧院可以出售的两种类型的新票最多数量?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Texas Instruments Resources
    ::得克萨斯州工具资源

    In the CK-12 Texas Instruments Algebra I FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See .
    ::在CK-12得克萨斯州仪器代数I FlexBook资源中,有图表计算活动,旨在补充本章某些经验教训的目标。