章节大纲

  • lesson content

    Mary Ellen has $60 to spend at the craft store and she is very interested in buying either scrapbooks that cost $10 or fashion stickers that cost $5 per package. Before making a purchase, she needs to know how many scrapbooks or how many packages of stickers she can buy with her money. How can Mary Ellen figure this out?
    ::玛丽·艾伦在手工艺品商店有60美元,她非常有兴趣购买10美元的剪贴纸,或者每包5美元的时装贴纸。 在购买之前,她需要知道有多少剪贴纸,或者她可以用钱买多少套贴纸。 玛丽·埃伦怎样才能弄明白这一点呢?

    In this concept, you will learn to use intercepts .
    ::在这个概念中,你会学会使用拦截。

    Intercepts
    ::拦截

    Consider the following linear graph.
    ::考虑下线性图。

    lesson content

    The above graph models the linear function 3 x + 2 y = 6 . The function is written in standard form A x + B y = C . Notice that the line passes through the x -axis at the point ( 2 , 0 ) . The point where the graph intersects the horizontal x -axis is called the x - intercept . The y -value of any point on the x -axis is zero. The x -axis is really the line having the equation y = 0 .
    ::上图模式的线性函数 3x+2y=6. 函数以标准格式 Ax+By=C 写成。请注意,该线在点(2,0) 穿过 x 轴。该线通过x 轴,该点将水平 x 轴交叉称为 x 界面。x 轴上任何点的 Y 值为零。x 轴实际上是具有 y=0 方程式的线条。

    The line also passes through the y -axis at the point ( 0 , 3 ) . The point where the graph intersects the vertical y -axis is called the y - intercept . The x -value of any point on the y -axis is zero. The y -axis is really the line having the equation x = 0 .
    ::线条在点( 0, 3) 也通过 y 轴。 图形交叉垂直 y 轴的点被称为 y 界面。 Y 轴上任何点的 x 值为 0。 Y 轴是具有等式 x=0 的线条 。

    Remember, only two points are needed to draw a straight line. Therefore , the graph of the linear function 3 x + 2 y = 6  was drawn by plotting the x - and y -intercepts and using a straight edge to join the two plotted points.
    ::记住, 绘制直线线线条只需要两个点。 因此, 线性函数 3x+2y=6 的图形是用绘制 X 和 y 界面, 并使用直边缘加入两个绘图点来绘制的 。

    From a given function, the intercepts can be determined using algebra. Let’s look at an example.
    ::从给定的函数中,拦截量可以用代数来确定。让我们来举一个例子。

    5 x 3 y = 15

    ::5x-3y=15

    First, determine the x -intercept. Substitute y = 0  in the equation.
    ::首先,确定 X 界面。 方程中的替代 y=0 。

    5 x 3 y = 15 5 x 3 ( 0 ) = 15

    ::5x-3y=155x-3(0)=15

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    5 x 3 ( 0 ) = 15 5 x 0 = 15 5 x = 15

    ::5x-3(0)=155x-0=155x=155x=15

    Next, divide both sides of the equation by ‘5’ to solve for ‘ x ’.
    ::接下来,将等式的两边除以 ' 5 ' , 以解答 'x ' 。

    5 x = 15 5 1 x 5 = 15 3 5 x = 3

    ::5x=1551x5=1535x=3

    The answer is 3.
    ::答案是3

    The x -intercept is ( 3 , 0 ) .
    ::x 拦截是 (3,0) 。

    Second, determine the y -intercept. Substitute x = 0  in the equation.
    ::第二,确定 Y 界面。 方程式中的替代 x=0 。

    5 x 3 y = 15 5 ( 0 ) 3 y = 15

    ::5x-3y=155(0)-3y=15

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    5 ( 0 ) 3 y = 15 0 3 y = 15 3 y = 15

    ::5(0)-3y=150-3y=15-3y=15

    Next, divide both sides of the equation by ‘-3’ to solve for ‘ y ’.
    ::接下来,将方程式两边除以 ' 3 ' ,

    3 y = 15 3 1 y 3 = 15 5 3 y = 5

    ::-3y=15-31-3=15-5-3-3y=5

    The answer is -5.
    ::答案是 -5

    The y -intercept is ( 0 , 5 ) .
    ::y 界面是 (0,-5) 。

    Now, the values of the x - and y -intercepts can be used to plot the graph of the linear function  5 x 3 y = 15 .
    ::现在, x 和 y 界面的值可用于绘制线性函数 5x-3y=15 的图。

    lesson content

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Mary Ellen and the scrapbooks or stickers. She needs to figure out how many scrapbooks or how many packages of fashion stickers she can buy with her $60.00. How can she do this?
    ::早些时候,有人给了你一个关于Mary Ellen和剪贴纸或贴纸的问题。她需要弄清楚她能用60美元买到多少剪贴纸或多少套时装贴纸。她怎么能这样做呢?

    Mary Ellen can use the x - and y -intercepts of a linear function.
    ::Mary Ellen可以使用线性函数的 X 和 Y 界面。

    First, write a linear function to represent the information given.
    ::首先,写一个线性函数以代表给定的信息。

    Let ‘ x ’ represent the number of scrapbooks that cost $10 each and let ‘ y ’ represent the number of packages of stickers that cost $5.00 each. She has $60.00 to spend.
    ::让`x ' 代表每本10美元的废纸数量,让`y ' 代表每张5美元的成套贴纸数量。 她有60美元可花。

    The linear function to model the given information is:
    ::用于模拟给定信息的线性函数为:

    10 x + 5 y = 60

    ::10x+5y=60

    Next, determine x - and y -intercepts of the linear function.
    ::下一步,确定线性函数的 X 和 Y 界面。

    First, determine the x -intercept. Substitute y = 0  in the equation.
    ::首先,确定 X 界面。 方程中的替代 y=0 。

    10 x + 5 y = 60 10 x + 5 ( 0 ) = 60

    ::10x+5y=6010x+5(0)=60

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    10 x + 5 ( 0 ) = 60 10 x + 0 = 60 10 x = 60

    ::10x+5(0)=6010x+0=6010x=60

    Next, divide both sides of the equation by ‘10’ to solve for ‘ x ’.
    ::接下来,将等式的两边除以 ' 10 ' , 解决 'x ' 。

    10 x = 60 10 1 x 10 = 60 6 10 x = 6

    ::10x=60101x10=60610x=6

    The answer is 6.
    ::答案是6个

    The x -intercept is ( 6 , 0 ) .
    ::x 拦截( 6, 0) 。

    Second, determine the y -intercept. Substitute x = 0  in the equation.
    ::第二,确定 Y 界面。 方程式中的替代 x=0 。

    10 x + 5 y = 60 10 ( 0 ) + 5 y = 60

    ::10x+5y=6010(0)+5y=60

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    10 ( 0 ) + 5 y = 60 0 + 5 y = 60 5 y = 60

    ::10(0)+5y=600+5y=60

    Next, divide both sides of the equation by ‘30’ to solve for ‘ y ’.
    ::接下来,将方程式两边除以 '30 ' ,

    5 y = 60 5 1 y 5 = 60 12 5 y = 12

    ::5y=6051y5=60125y=12

    The answer is 12.
    ::答案是12岁

    The y -intercept is ( 0 , 12 ) .
    ::y 界面是 (0, 12) 。

    Mary Ellen can buy either 6 scrapbooks and no stickers or 12 packages of stickers and no scrapbooks.
    ::Mary Ellen既可以买6本剪贴纸,又不能买贴纸,也可以买12包贴纸,也不能买剪贴纸。

    Example 2
    ::例2

    For the given linear function, determine the x - and y -intercepts.
    ::对于给定的线性函数,确定 x 和 y 界面。

    4 x 3 y = 24

    ::4-3y24

    First, determine the x -intercept. Substitute y = 0  in the equation.
    ::首先,确定 X 界面。 方程中的替代 y=0 。

    4 x 3 y = 24 4 x 3 ( 0 ) = 24

    ::4 - 3y244x-3(0)24

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    4 x 3 ( 0 ) = 24 4 x 0 = 24 4 x = 24

    ::4x-3(0)244x-024x24

    Next, divide both sides of the equation by ‘4’ to solve for ‘ x ’.
    ::接下来,将方程式两边除以 '4 ' ' ' ' ' ' ' ' ' , 解决`x ' 。

    4 x = 24 4 1 x 4 = 24 6 4 x = 6

    ::4x 4x2441x4}24-64x#6

    The answer is -6.
    ::答案是 -6

    The x -intercept is ( 6 , 0 ) .
    ::X 拦截( - 6,0) 。

    Second, determine the y -intercept. Substitute x = 0  in the equation.
    ::第二,确定 Y 界面。 方程式中的替代 x=0 。

    4 x 3 y = 24 4 ( 0 ) 3 y = 24

    ::4x-3y244(0)-3y24

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    4 ( 0 ) 3 y = 24 0 3 y = 24 3 y = 24

    ::4(0)-(3)-(240)-(3)-(24)-(3)-(24)

    Next, divide both sides of the equation by ‘-3’ to solve for ‘ y ’.
    ::接下来,将方程式两边除以 ' 3 ' ,

    3 y = 24 3 1 y 3 = 24 8 3 y = 8

    ::- 3 - 24 - 31 - 3 - 24 - 8 - 8 - 3y=8

    The answer is 8.
    ::答案是8岁

    The y -intercept is ( 0 , 8 ) .
    ::y 界面是( 0, 8) 。

    Example 2
    ::例2

    For the given linear function, use the x -and y -intercepts to draw the graph:
    ::对于给定的线性函数,使用 x 和 y 界面绘制图形:

    6 x 4 y = 24

    ::6x-4y=24

    First, determine the x -intercept. Substitute y = 0  in the equation.
    ::首先,确定 X 界面。 方程中的替代 y=0 。

    6 x 4 y = 24 6 x 4 ( 0 ) = 24

    ::6x-4y=246x-44(0)=24

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    6 x 4 ( 0 ) = 24 6 x 0 = 24 6 x = 24

    ::6x-4(0)=246x-0=246x=24

    Next, divide both sides of the equation by ‘6’  to solve for ‘ x ’.
    ::接下来,将方程式两边除以 '6 ' ' ' ' ' ' ' , 解决`x ' 。

    6 x = 24 6 1 x 6 = 24 4 6 x = 4

    ::6x=2461x6=2446x=4

    The answer is 4.
    ::答案是4。

    The x -intercept is ( 4 , 0 ) .
    ::x 界面为 (4,0) 。

    Second, determine the y -intercept. Substitute x = 0  in the equation.
    ::第二,确定 Y 界面。 方程式中的替代 x=0 。

    6 x 4 y = 24 6 ( 0 ) 4 y = 24

    ::6x-4y=246(0)-4y=24

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    6 ( 0 ) 4 y = 24 0 4 y = 24 4 y = 24

    ::6(0)-4y=240-4y=24-4y=24

    Next, divide both sides of the equation by ‘-4’ to solve for ‘ y ’.
    ::接下来,将方程式两边除以 ' 4 ' ,

    4 y = 24 4 1 y 4 = 24 6 4 y = 6

    ::− 4y=24-41y-44=24-6-4y=6-6-4y6

    The answer is -6.
    ::答案是 -6

    The y -intercept is ( 0 , 6 ) .
    ::y 界面是 (0, - 6) 。

    Now, the values of the x - and y -intercepts can be used to plot the graph of the linear function.
    ::现在, x 和 y 界面的值可用于绘制线性函数的图形。

    6 x 4 y = 24

    ::6x-4y=24

    lesson content

    Example 3
    ::例3

    For the following graph, name the x - and y -intercepts.
    ::下图中,请标明 X 和 y 界面。

    lesson content

    The graph crosses the x -axis at the point ( 30 , 0 )  and the y -axis at the point ( 0 , 50 ) .
    ::图表在点(30,0)横过x轴,在点(0,-50)横过Y轴。

    The x -intercept is ( 30 , 0 )  and the y -intercept is ( 0 , 50 ) .
    ::x 拦截( 30,0) , y 拦截( 0,-50) 。

    Example 4
    ::例4

    For the given linear function, determine the x - and y -intercepts.
    ::对于给定的线性函数,确定 x 和 y 界面。

    15 x + 30 y = 120

    ::15x+30y=120

    First, determine the x -intercept. Substitute y = 0  in the equation.
    ::首先,确定 X 界面。 方程中的替代 y=0 。

    15 x + 30 y = 120 15 x + 30 ( 0 ) = 120

    ::15x+30y=12015x+30(0)=120

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    15 x + 30 ( 0 ) = 120 15 x + 0 = 120 15 x = 120

    ::15x+30(0)=12015x+0=12015x=12015x=120

    Next, divide both sides of the equation by ‘15’ to solve for ‘ x ’.
    ::接下来,将等式两边除以 ' 15 ' 来解答 'x ' 。

    15 x = 120 15 1 x 15 = 120 8 15 x = 8

    ::15x=120151x15=120815x=8

    The answer is 8.
    ::答案是8岁

    The x -intercept is ( 8 , 0 ) .
    ::X 界面是 8,0 个 。

    Second, determine the y -intercept. Substitute x = 0  in the equation.
    ::第二,确定 Y 界面。 方程式中的替代 x=0 。

    15 x + 30 y = 120 15 ( 0 ) + 30 y = 120

    ::15x+30y=12015(0)+30y=120

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    15 ( 0 ) + 30 y = 120 0 + 30 y = 120 30 y = 120

    ::15(0)+30y=1200+30y=12030y=120

    Next, divide both sides of the equation by ‘30’ to solve for ‘ y ’.
    ::接下来,将方程式两边除以 '30 ' ,

    30 y = 120 30 1 y 30 = 120 4 30 y = 4

    ::30y=120301y30=120430y=4

    The answer is 4.
    ::答案是4。

    The y -intercept is ( 0 , 4 ) .
    ::Y 界面是 0, 4 。

    Review
    ::回顾

    Determine the x  and y -intercepts of each equation. There will be two answers for each equation.
    ::确定每个方程式的 x 和 Y 界面。 每个方程式将有两个答案 。

    1.  3 x + 4 y = 12
    ::1. 3x+4y=12

    2.  6 x + 2 y = 12
    ::2. 6x+2y=12

    3.  4 x + 5 y = 20
    ::3. 4x+5y=20

    4.  4 x + 2 y = 8
    ::4. 4x+2y=8

    5.  3 x + 5 y = 15
    ::5. 3x+5y=15

    6.  2 x + 3 y = 6
    ::6.-2x+3y=6

    7.  3 x + y = 9
    ::7.-3x+y=9

    8.  2 x 2 y = 6
    ::8.-2x-2y=6

    9.  7 x + 3 y = 21
    ::9. 7x+3y=21

    10.  2 x + 9 y = 36
    ::10. 2x+9y=36

    Look at each graph and identify the x  and y -intercept of each equation. Each graph will have two answers.
    ::查看每个图形, 并识别每个方程式的 x 和 Y 界面。 每个图形将有两个答案 。

    11. 

    lesson content

    12. 

    lesson content

    13. 

    lesson content


    14. 
    lesson content


    15. 
    lesson content

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。