11.2 平根函数的转移
Section outline
-
Shifts of Square Root Functions
::平根函数移位We will now look at how graphs are shifted up and down in the Cartesian plane .
::我们现在将研究如何在笛卡尔飞机上向上和向下移动图表。Graph the functions and .
::函数=x,y=x+2andy=x-2图。When we add a constant to the right-hand side of the equation , the graph keeps the same shape, but shifts up for a positive constant or down for a negative one.
::当我们在方程式的右侧添加一个常数时, 图形保持相同的形状, 但向正常数移动或向下移动到负常数 。Graphing Multiple Functions
::绘制多个函数Graph the functions and .
::函数y=x,y=x-2和y=x+2的图形。When we add a constant to the argument of the function (the part under the radical sign), the function shifts to the left for a positive constant and to the right for a negative constant.
::当我们在函数参数(激进符号下的部分)中加上一个常数时,函数向左移,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转,向右转。Now let’s see how to combine all of the above types of transformations .
::现在让我们来看看如何将上述所有类型的转变结合起来。Combining Transformations
::组合转换Graph the function .
::函数 y= 23x- 1+2 图形。We can think of this function as a combination of shifts and stretches of the basic square root function . We know that the graph of that function looks like this:
::我们可以将这个函数视为基本平方根函数 y=x 的移动和拉长的组合。 我们知道该函数的图表是这样的:If we multiply the argument by 3 to obtain , this stretches the curve vertically because the value of increases faster by a factor of .
::如果我们将参数乘以 3 以获得 y= 3x, 则会垂直延伸曲线, 因为 y 的值增加更快, 增加系数为 3 。Next, when we subtract 1 from the argument to obtain this shifts the entire graph to the left by one unit.
::接下来,当我们从参数中减去 1 以获取 y= 3x- 1 时, 将整张图移到左侧一个单元 。Multiplying the function by a factor of 2 to obtain stretches the curve vertically again, because increases faster by a factor of 2.
::将函数乘以 2 乘以 2 以获得 y= 23x- 1 的 y= 23x- 1 ,将曲线垂直再拉长一次,因为 y 增速快于 2 。Finally we add 2 to the function to obtain . This shifts the entire function vertically by 2 units.
::最后,在获取y=23x-1+2的函数中增加2个。 这将整个函数垂直改变为 2 个单位 。Each step of this process is shown in the graph below. The purple line shows the final result.
::此过程的每个步骤都显示在下图中。紫线显示最终结果。Now we know how to graph square root functions without making a table of values. If we know what the basic function looks like, we can use shifts and stretches to transform the function and get to the desired result.
::现在我们知道如何绘制平方根函数, 而不绘制一个数值表。 如果我们知道基本函数的外观, 我们可以使用移动和伸展来转换函数, 并达到预期的结果 。Example
::示例示例示例示例Example 1
::例1Graph the function .
::函数 yx+3 - 5 的图形。We can think of this function as a combination of shifts and stretches of the basic square root function . We know that the graph of that function looks like this:
::我们可以将这个函数视为基本平方根函数 y=x 的移动和拉长的组合。 我们知道该函数的图表是这样的:Next, when we add 3 to the argument to obtain this shifts the entire graph to the right by 3 units.
::接下来,当我们为获取 y=x+3 在参数中添加 3 时, 将整张图向右移动 3 个单位 。Multiplying the function by -1 to obtain which reflects the function across the -axis.
::将函数乘以 -1 以获取 yx+3, 反映 X 轴的函数 。Finally we subtract 5 from the function to obtain . This shifts the entire function down vertically by 5 units.
::最后,我们从函数中减去5,以获取 yx+3-5。这样整个函数垂直下移5个单位。Review
::回顾Graph the following functions.
::如下图所示函数。-
::y=2x-1 -
::y=x-100 y=x-100 -
::y=4x+4 y=4x+4 -
::y=5-x y=5-x -
::y=2x+5 y=2x+5 -
::y=3 - x y=3 - x -
::y=4+2x y=4+2x -
::y=22x+3+1 -
::y=4+2-x y=4+2-x -
::y=x+1 - 4x - 5
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -