11.12 中点公式
章节大纲
-
The Midpoint Formula
::中点公式Here you will learn how to find the point exactly half way between two points.
::在这里您将学习如何在两点之间 找到正中一半的点。Find the coordinates of the point that is in the middle of the line segment connecting the points and .
::查找连接A=(-7)-2点和B=(3)-8点的线段中间点的坐标。Let’s start by graphing the two points:
::让我们先用图表绘制两点:We see that to get from point to point we move 6 units down and 10 units to the right.
::我们看到从A点到B点 我们把6个单位往下移动 10个单位往右移动In order to get to the point that is halfway between the two points, it makes sense that we should move half the vertical distance and half the horizontal distance—that is, 3 units down and 5 units to the right from point .
::为了达到两点之间的中间点,我们应该将垂直距离的一半和水平距离的一半,即从A点向下3个单位和5个单位向右移动,这是有道理的。The midpoint is .
::中点为M=(-7+5,-2-3)=(-2,-5)。The Midpoint Formula
::中点公式We now want to generalize this method in order to find a formula for the midpoint of a line segment.
::我们现在要普遍采用这种方法,以便找到一条线段中点的公式。Let’s take two general points and and mark them on the coordinate plane :
::让我们以 A = (x1,y1) 和 B = (x2,y2) 作两个一般点并在坐标平面上标记 :We see that to get from to , we move units to the right and units up.
::我们可以看到,从A到B, 我们移动 x2 - x1 单位到右边 和 y2 -y1 单位向上。In order to get to the half-way point, we need to move units to the right and up from point . Thus the midpoint is at .
::为了达到中途点,我们需要从A点向右移动 x2 - x12 单位和 y2 -y12 单位。 因此中点 M 值为 (x1+x2 - x12,y1+y2 -y12) 。This simplifies to . This is the Midpoint Formula:
::此简化为 M= (x1+x22,y1+y22) 。 这是中点公式 :The midpoint of the line segment connecting the points and is .
::连接点(x1,y1)和点(x2,y2)的线段中点是(x1+x22,y1+y22)。It should hopefully make sense that the midpoint of a line is found by taking the average values of the and values of the endpoints.
::希望用终点的 x 和 y - 值的平均值来找到线的中点是有道理的。Finding the Midpoint
::寻找中点Find the midpoint between the following points.
::在以下各点之间查找中点。Let’s apply the Midpoint Formula:
::让我们应用中点公式x1+x22,y1+y22)
a) (-10,2)
::a) (10,2)the midpoint of (-10, 2) and (3, 5) is
::中点(-10,2)和中点(3,5)为(-10+32,2+52)=(-72,72)=(-3.5,3.5)__b) (3,5)
::b) (3,5)the midpoint of (3, 6) and (7, 6) is
::中点(3,6)和中点(7,6)为(3+72,6+62)=(102,122)=(5,6)__Finding Endpoints
::寻找终点A line segment whose midpoint is (2, -6) has an endpoint of (9, -2). What is the other endpoint?
::中点为(2,6)的线段端点为(9,2)的线段端点为(9,2),另一端点是什么?In this problem we know the midpoint and we are looking for the missing endpoint.
::在这个问题上,我们知道中点,我们正在寻找缺失的终点。The midpoint is (2, -6).
::中点为2,6。One endpoint is .
::一个终点是(x1,x2)=(9,-2)。Let’s call the missing point .
::让我们把缺点(x,y)称为(x,y) 。We know that the coordinate of the midpoint is 2, so:
::我们知道中点的x- 坐标是 2, 所以: 2= 9+x22+4= 9+x2+x2+x2+x2=5We know that the coordinate of the midpoint is -6, so:
::我们知道中点的Y坐标是 -6,所以:
::-=YTET -伊甸园字幕组=- 翻译:The missing endpoint is (-5, -10).
::缺失的终点是 (5 - 10) 。Here’s another way to look at this problem: To get from the endpoint (9, -2) to the midpoint (2, -6), we had to go 7 units left and 4 units down. To get from the midpoint to the other endpoint, then, we would need to go 7 more units left and 4 more units down, which takes us to (-5, -10).
::这个问题的另一种观点是:从终点(9,-2)到中点(2,6),我们不得不左转7个单位,向下走4个单位。 从中点到另一端点,我们需要再左转7个单位,向下走4个单位,这把我们带到(5,10),再往下走7个单位,再往下走4个单位。Example
::示例示例示例示例Example 1
::例1Find the midpoint between the points (4, -5) and (-4, 5).
::查找点(4,5)和点(4,5)之间的中点。Let’s apply the Midpoint Formula:
::让我们应用中点公式x1+x22,y1+y22)
The midpoint of (4, -5) and (-4, 5) is
::中点(4,5)和中点(4,5)为(4-42,-5+52)=(02,02)=(0,0)__Review
::回顾Find the midpoint of the line segment joining the two points.
::查找连接两个点的线段的中点。-
(3, -4) and (6, 1)
:3,4)和(6,1)
-
(2, -3) and (2, 4)
:2,3和2,4)
-
(4, -5) and (8, 2)
:4、5和5)和(8、2)
-
(1.8, -3.4) and (-0.4, 1.4)
:1.8,3.4)和(-0.4,1.4)
-
(5, -1) and (-4, 0)
:5,-1)和(4,0)
-
(10, 2) and (2, -4)
:10、2和2,4)
-
(3, -3) and (2, 5)
:3,3,3)和(2,5)
-
An endpoint of a line segment is (4, 5) and the midpoint of the line segment is (3, -2). Find the other endpoint.
::线段的终点是(4,5),线段的中点是(3,2),找到另一个终点。 -
An endpoint of a line segment is (-10, -2) and the midpoint of the line segment is (0, 4). Find the other endpoint.
::线段的终点是(-10,-2),线段的中点是(0, 4)。 -
Find a point that is the same distance from (4, 5) as it is from (-2, -1), but is
not
the midpoint of the line segment connecting them.
::查找一个与( 2 - 1) 相同的距离( 4 、 5) 的点, 但不是连接它们的线段的中点 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
(3, -4) and (6, 1)