章节大纲

  • lesson content

    Jessie is stuck on her math homework. She is stuck on the problem  5 x 3 y 9 x + 7 y . The directions are asking her to simplify, but she isn’t sure how to do that. Do you know?
    ::Jessie被困在数学功课上。 她被困在5x-3y-9x+7的问题上。 方向要求她简化,但她不知道如何简化。 你知道吗?

    In this concept, you will learn to simplify by combining like terms .
    ::在这个概念中,你会学会简化,把类似术语结合起来。

    Combining Like Terms
    ::将类似术语合并

    A polynomial is an algebraic expression that shows the sum of monomials. Since the prefix 'mono' means 'one', a monomial is a single piece or term . The prefix 'poly' means 'many'. So the word polynomial refers to multiple   terms in an expression . The relationships between the terms may be sums or differences.
    ::多式表示法是一个代数表达式,它显示单项的和。由于前缀“ mono” 是指“ one ” , 单项表示单项或术语。 前缀“ poly” 表示“ many ” 。 因此,多式表示法是指一个表达式中的多个术语。 术语之间的关系可以是数字或差异。

    Polynomial expressions include:  x 2 + 5 3 x 8 + 4 x 5 - 7 a 2 + 9 b 4 b 3 + 6
    ::复数表达式包括: x2+53x-8+4x5-7a2+9b-4b3+6

    You can simplify polynomials by combining like terms. In mathematics, you are able to combine like terms but you cannot combine unlike terms.
    ::您可以通过将类似术语合并来简化多语种。在数学中,你可以将类似术语合并,但不能将不同术语合并。

    Terms are considered like terms if they have exactly the same variables with exactly the same exponents.
    ::用语如具有完全相同的变量和完全相同的引言,则视为用语。

    A term can also be a single number like 7 or -5. These are called constants .
    ::一个术语也可以是一个数字,如 7 或 - 5。 这些称为常数 。

    Any term with a variable has a numerical factor called the coefficient . The coefficient of 4 x  is 4. The coefficient of - 7 a 2  is -7. The coefficient of y  is 1 (because its numerical factor is an unwritten number 1. You could write “ 1 y ” to show that the coefficient of y  is 1 but it is not necessary because any number multiplied by 1 is unchanged ).
    ::具有变量的任何术语都有一个数字系数。 4x系数为4。 系数为 -7a2。 系数为 -7。 y系数为 1( 因为它的数值系数是一个不成文的编号 1 ) 。 您可以写“ 1y” 来显示y系数为 1, 但不必要, 因为任何数字乘以 1 不变 。

    Here are  some examples of like and unlike terms:
    ::以下是一些类似和不同术语的例子:

    7 n  and 5 n  are like terms because they both have the variable n  with an exponent of 1.
    ::7n和5n是相同的条件 因为他们都有变量n 和1的指数

    4 n 2  and - 3 n  are not like terms because, although they both have the variable n , they do not have the same exponent.
    ::4n2 和 -3n 与术语不同,因为尽管它们都有变量 n,但它们没有相同的指数。

    5 x 3   and 8 y 3  are not like terms because, although they both have the same exponent, they do not have the same variable.
    ::5x3和8Y3与术语不同,因为尽管它们都有相同的指数,但它们没有相同的变量。

    Like terms can be combined by adding their coefficients.
    ::类似术语可以通过增加其系数加以合并。

    7 n + 5 n = 12 n 3 x 3 + 5 x 3 = 8 x 3 2 t 4 10 t 4 = 12 t 4 2 n 2 3 n + 5 n 2 + 11 n = 7 n 2 + 8 n

    ::7n+5n=12n3x3+5x3=8x3_2t4-10t412t42n2-3n+5n2+11n=7n2+8n

    Notice that the exponent does not change when you combine like terms. If you think of 7 n  as simply a shorter way of writing n + n + n + n + n + n + n  and 5 n  as a shorter way of writing n + n + n + n + n ,  then combining those like terms would result in  ( n + n + n + n + n + n + n ) + ( n + n + n + n + n ) ,  which is the same as  12 n .  So  7 n + 5 n = 12 n .
    ::请注意, 当您将类似条件合并时, 前名不会改变 。 如果您将 7n 简单地看作是写 n+n+n+n+n+n+n+n+n和 5n 的较短方式来写 n+n+n+n+n+n, 那么将这些类似条件合并起来将导致 (n+n+n+n+n+n+n+n)+(n+n+n+n+n+n+n), 这与 12n 相同 。 So 7n+5n=12n 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked about  helping Jessie with her simplification problem.
    ::之前有人问过你 帮杰西处理简化问题

    Here is the problem that Jessie is stuck on:
    ::这是杰西被困在下面的问题:

    5 x 3 y 9 x + 7 y

    ::5-3y-9x+7y

    First, consider  the like terms and combine them:
    ::首先,考虑一下类似的术语,然后将它们结合起来:

    5 x 9 x = - 4 x - 3 y + 7 y = 4 y

    ::5-9x=-4x-3y+7y=4y

    Then  write the terms in a single expression again :
    ::然后用一个词来写:

    - 4 x + 4 y

    ::-4x+4y

    The answer is - 4 x + 4 y .
    ::答案是 - 4x+4y 。

    Example 2
    ::例2

    Simplify by combining like terms:
    ::将类似术语合并简化:

    15 x 12 x + 3 y 8 x + 7 y 1 + 5

    ::15-12x+3y-8x+7y-1+5

    First, let’s look at the like terms and combine them.
    ::首先,让我们看一看类似的术语,然后把它们结合起来。

    15 x 12 x 8 x = - 5 x 3 y + 7 y = 10 y - 1 + 5 = 4

    ::15-12x-8x=-5x3y+7y=10y-1+5=4

    Then rewrite the combined terms in a single expression:
    ::然后用一个单一的表达式重写合并术语 :

    - 5 x + 10 y + 4

    ::-5x+10y+4

    The answer is - 5 x + 10 y + 4 .
    ::答案是 - 5x+10y+4。

    Example 3
    ::例3

    Simplify by combining like terms.
    ::将类似术语合并简化。

    2 x 8 y 4 x + 7 y + 9

    ::2 - 8y- 4x+7y+9

    First, let’s look at the like terms and combine them where  possible.
    ::首先,让我们看一看相似的术语,并尽可能将它们结合起来。

    2 x 4 x = - 2 x - 8 y + 7 y = - y 9 = 9

    ::2x-4x=-2x-8y+7y=-y9=9

    Then rewrite the terms in a single expression:
    ::然后用一个单一的表达式重写术语 :

    - 2 x y + 9

    ::-2x-y+9

    The answer is - 2 x y + 9 .
    ::答案是 - 2x-y+9。

    Example 4
    ::例4

    Simplify by combining like terms.
    ::将类似术语合并简化。

    5 a + 3 b 8 b + a 7

    ::5a+3b-8b+7

    First, let’s look at the like terms and combine them.
    ::首先,让我们看一看类似的术语,然后把它们结合起来。

    5 a + a = 6 a 3 b 8 b = - 5 b - 7 = - 7

    ::5a+a=6a3b-8b=-5b-7=-7

    Then rewrite the terms in a single expression:
    ::然后用一个单一的表达式重写术语 :

    6 a 5 b 7

    ::6a-5b-7

    The answer is 6 a 5 b 7 .
    ::答案是6a-5b-7。

    Example 5
    ::例5

    Simplify by combining like terms.
    ::将类似术语合并简化。

    5 a 7 b = 8 b 2 a + 8 a 9 + 8

    ::5a-7b=8b-2a+8a-9+8

    First, look at the like terms and combine them.
    ::首先,看看相似的术语 并结合它们。

    5 a 2 a + 8 a = 11 a - 7 b + 8 b = b - 9 + 8 = - 1

    ::5a-2a+8a=11a-7b+8b=b-9+8=-1

    Then rewrite the combined terms in a single expression:
    ::然后用一个单一的表达式重写合并术语 :

    11 a + b 1

    ::11a+b-1

    The answer is 11 a + b 1 .
    ::答案是11a+b-1。

    Review
    ::回顾

    Simplify the following polynomials by combining like terms.
    ::将类似术语合并,以简化以下多义词句。

    1. 6 x + 7 18 x + 4
      ::6x+7-18x+4
    2. 5 x 7 x + 5 x + 4 9
      ::5-7x+5x+4-9
    3. 3 x + 8 y 5 x + 3 y
      ::3x+8y-5x+3y
    4. 17 x 2 7 x 2 5 x + 3 x + 14
      ::17x2 - 7x2 - 5x+3x+14
    5. 3 x y 9 x y 5 x + 4 x 7 + 3
      ::3xy-9xy-5x+4x-7+3 3xy-9xy-5xx+4x-7+3
    6. 9 x + 7 y 15 x + 4 x 9 y
      ::9x+7y-15x+4x-9y
    7. 3 x + 7 5 x 8 y + 4 x 2 y + 7
      ::3x+7-5x-8y+4x-2y+7
    8. 3 x y x y 15 x + 4 11
      ::3xy-xy-15x+4-11
    9. - 8 x + 3 x + 7 y 5 x + 4 y 2
      ::-8x+3x+7y-5x+4y-2
    10. 3 x 2 + 6 x 3 y + 2 x 7
      ::3x2+6x-3y+2x-7
    11. 14 x y 18 x y + 7 y + 8 x 2 x + 9
      ::14xy-18xy+7y+8x-2x+9
    12. 3 x + 7 5 x + 4 y 18 y
      ::3x+7-5x+4y-18y
    13. 6 y 2 4 y 3 + y 2 8
      ::6y2-4y3+y2-8
    14. - 5 q + q 2 + 7 q 7
      ::-5q+q2+7-q-7
    15. n 2 m 3 n 2 m + 5 n 2 m 2 + 11 n
      ::n2m-3n2m+5n2m2+11n

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。