章节大纲

  • lesson content

    This parabola was created from an equation . What was the equation?
    ::这个抛物线是方程式创造出来的 方程式是什么?

    In this concept, you will learn to understand the equation of a parabola.
    ::在这一概念中,你会学会理解抛物线的方程式。

    Parabolas
    ::抛物体

    A parabola is a U-shaped graph.Equations with the ‘ x variable raised to the 2 nd power are called  quadratic equations  and their graphs are always parabolas.
    ::抛物线是一个 U 形状的图形。 以 `x ' 变量升至 2 次功率的等式被称为二次方程, 其图形总是 parapolas 。

    Here is a quadratic equation .
    ::这里有一个二次方程。

    y = x 2 2

    ::y=x2-2

    The graph of a parabola can change position, direction, and width based on the coefficients of  x 2 and  x as well as the constant . Because those pieces of the equation are so important, you name them in what is called the standard form .
    ::抛物线的图形可以根据 x2 和 x 的系数以及常数来改变位置、 方向和宽度。 因为方程式中的这些部分如此重要, 您在标准格式中给它们命名 。

    Standard form of a quadratic equation:  y = a x 2 + b x + c (where ‘ a cannot be zero). Notice that ‘ a ’ and ‘ b ’ are coefficients and can be either positive or negative.  The value of ‘ c ’ is a constant.  All of these values affect the parabola that is graphed.
    ::二次方程的标准形式 : y= ax2+bx+c (其中`a ' 不能为零 ) 。 请注意, `a ' 和`b ' 是系数,可以是正数,也可以是负数。 `c ' 的价值是一个常数。 所有这些数值都会影响所绘制的抛物线。

    Once again, the ‘ a ’ value can predict two things:
    ::A值可以预测两件事:

    1. how wide the graph will be
    ::1. 图表的宽度

    Generally speaking, the further the ‘ a ’ value is from zero, the narrower the graph; the closer the ‘ a ’ value is to zero, the wider the graph.
    ::一般说来, " a " 值越远来自零,越窄的图形; " a " 值越近于零,该图就越大。

    2. if the graph opens upward or downward.
    ::2. 如果图表向上或向下开放。

    A positive value of ‘ a ’ will give a graph that opens upwards while a negative value of ‘ a ’ will give a graph that opens downwards.
    ::“a”的正值将给出一个向上打开的图表,而“a”的负值将给出一个向下打开的图表。

    What about the ‘ b ’ value?
    ::B 值如何?

    All of the parabolas are symmetrical—they are the same on both sides, as if they were reflected on a mirror that were right down the middle of the graph. This reflection line is called the axis of . The  b value helps us to predict the axis of symmetry.
    ::所有抛光线都是对称的——两侧都是一样的,好像它们被反射到一面正下方的镜子上。这个反射线被称为 . 轴。 `b ' 值帮助我们预测对称轴。

    Finally, the  c value, determines the y - intercept of the graph—it tells where the graph will cross the y -axis. When the  c value was 3, the graph crossed the y -axis at 3.
    ::最后, c 值, 确定图形的 y 界面- 它会显示图形要横过 y 轴的位置 。 当 c 值为 3 时, 图形会跨过 y 轴 3 。

    Let’s look at some graphs.
    ::让我们看看一些图表。

    lesson content

    lesson content

    lesson content

    Looking at these graphs, and knowing what the  a , b and  c values of the quadratic equation represent, will help to determine the equation of the graph. Here is a chart to help you understand what you can determine by these graphs.
    ::查看这些图表,并了解四方形的a、b和c值,将有助于确定图形的方程。这里是一张图表,帮助您了解这些图表可以确定什么。

    lesson content

    Now you can see how the graphs of each equation provide you with information.
    ::现在你可以看到每个方程式的图形如何为您提供信息。

    You have learned to write linear equations based on linear graphs, you can also find a quadratic equation by using the parabola.
    ::您已经学会了根据线性图形撰写线性方程式, 您也可以通过使用 parbola 找到二次方程式 。

    You know that the ‘ a ’ value tells if the graph goes upward or downward. So, if the graph goes downward, the ‘ a ’ value must be negative. If the graph opens upward, the ‘ a ’ value must be positive.
    ::你知道“a”值表示图表向上还是向下。因此,如果图表向下,“a”值必须是负值。如果图表向上打开,“a”值必须是正值。

    You also know that the ‘ c ’ value tells you the y -intercept on the graph. So, if you know the y -intercept, then you know the ‘ c ’ value.
    ::您也知道“ c” 值告诉您图形上的 Y 拦截 。 所以, 如果您知道 y 拦截 , 那么您就会知道 “ c” 值 。

    If you have a graph, then you can also work backwards. In other words, you can fill in a t-table using the points you see on the graph. Then, by looking for a pattern in the t-table, you can derive the equation.
    ::如果您有一个图表, 那么您也可以向后工作 。 换句话说, 您可以使用图表上显示的点填入一个t- 表格 。 然后, 通过在t- 表格中查找一个图案, 您可以从中得出公式 。

    Let’s look at an example.
    ::让我们举个例子。

    Write the equation for the given graph.
    ::写入给定图形的方程式 。

    lesson content

    First, start with what you know about the values of ‘ a ’ and ‘ c ’.
    ::首先,首先从你所知道的“a”和“c”的价值观开始。

    a : Graph opens downward so a < 0 .
    ::a: 图表向下打开,以 < 0。

    c : The y -intercept is (0, 3) so c = 3 .
    ::c: Y 界面是 (0, 3) so c=3。

    Next, construct a table of values from the graph.
    ::下一步,从图表中构建一个数值表。

      x   y
    -2 -1
    -1 2
    0 3
    1 2
    2 -1

    Then, put what you know into the standard form of the quadratic equation. Since the graph goes over one and down 1, you know that a = 1 .
    ::然后,将你所知道的放入二次方程的标准形式。既然图表超过1和1,你知道A+1。

    y = a x 2 + b x + c y = x 2 + b x + 3

    ::y=ax2+bx+cyx2+bx+3 y=ax2+bx+3

    Then, test a point on the graph to find the value of b .
    ::然后,在图形上测试一个点以找到 b 的值 。

    y = x 2 + b x + 3

    ::y=x2+bx+3 y=x2+bx+3

    Point: (-1, 2)
    ::点数伤心-1,2)

    2 = ( 1 ) 2 + b ( 1 ) + 3 2 = 1 + b + 3 2 = b + 2 b = 0

    ::2(- 1) 2+b(-1)+3211b+32b+2b+2b=0

    The answer is y = x 2 + 3 .
    ::答案是yx2+3。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about the parabola.
    ::早些时候,有人给了你一个关于抛物线的问题。

    lesson content

    First, start with what you know about the values of ‘ a ’ and ‘ c ’.
    ::首先,首先从你所知道的“a”和“c”的价值观开始。

    a : Graph opens upward so a > 0 .
    ::a: 图表向上打开,为 a>0。

    c : The y -intercept is (0, 0) so c = 0 .
    ::c: Y 界面是 (0, 0) so c=0。

    Next, construct a table of values from the graph.
    ::下一步,从图表中构建一个数值表。

      x   y
    -2 4
    -1 1
    0 0
    1 1
    2 4

    Then, put what you know into the standard form of the quadratic equation. Since the graph goes over one and up 1, you know that a = 1 .
    ::然后,将你所知道的放入二次方程的标准形式。既然图表超过1和1,你知道A=1。

    y = a x 2 + b x + c y = x 2 + b x

    ::y=ax2+bx+cy=x2+bx y=ax2+bx

    Then, test a point on the graph to find the value of b .
    ::然后,在图形上测试一个点以找到 b 的值 。

    y = x 2 + b x

    ::yx2+bx yx2+bx

    Point: (-1, 1)
    ::点数伤心-1,1)

    1 = ( 1 ) 2 + b ( 1 ) 1 = 1 + b b = 0

    ::1=(- 1) 2+b(- 1) 1=1bb=0

    The answer is y = x 2 .
    ::答案是y=x2。

    Example 2
    ::例2

    Figure out the equation for the following parabola.
    ::找出下列抛物线的方程。

    lesson content

    First, start with what you know about the values of ‘ a ’ and ‘ c ’.
    ::首先,首先从你所知道的“a”和“c”的价值观开始。

    a : Graph opens upward so a > 0 .
    ::a: 图表向上打开,为 a>0。

    c : The y -intercept is (0, -4) so c = 4 .
    ::c: Y 界面是 0, 4, so c4。

    Next, construct a table of values from the graph.
    ::下一步,从图表中构建一个数值表。

      x   y
    -2 0
    -1 -3
    0 -4
    1 -3
    2 0

    Then, put what you know into the standard form of the quadratic equation. Since the graph goes over one and up 1, you know that a = 1 .
    ::然后,将你所知道的放入二次方程的标准形式。既然图表超过1和1,你知道A=1。

    y = a x 2 + b x + c y = x 2 + b x 4

    ::y=ax2+bx+cy=x2+bx-4 y=ax2+bx+cy=x2+bx-4

    Then, test a point on the graph to find the value of b .
    ::然后,在图形上测试一个点以找到 b 的值 。

    y = x 2 + b x 4

    ::yx2+bx- 4 yx2+bx- 4

    Point: (-1, -3)
    ::点数伤心-1,-3)

    3 = ( 1 ) 2 + b ( 1 ) 4 3 = 1 + b 4 3 = b 3 b = 0

    ::- 3=(-1)2+b(-1)-4-3=1b-4-3-3b-3b=0

    The answer is y = x 2 4 .
    ::答案是y=x2 -4。

    Example 3
    ::例3

    If the  c value is 4, where is the y -intercept of the graph?
    ::如果 c 值是 4 , 图形的 Y 界面在哪里 ?

    If c = 4 , the y –intercept or the point where the curve crosses the y -axis is (0, 4).
    ::如果 c= 4, y - interview 或曲线通过 y 轴的点 (0, 4) 。

    Example 4
    ::例4

    If the ‘ a ’ value is −3, will the parabola open upward or downward?
    ::如果`a ' 值为-3, 抛物线会向上或向下打开吗?

    If a < 0 , then the graph opens downward so when a = 3 , the graph will open downward.
    ::如果 a<0,则图形向下打开,当 a\\\\\3 时,图形向下打开。

    Example 5
    ::例5

    If the parabola opens upward, which value is positive  a , b or c .
    ::如果抛物线向上打开,该值为正a、b或c。

    When the graph opens upward or downward, the value of ‘ a ’ is affected. Therefore if the graph opens upward you know that ‘ a ’ is positive.
    ::当图表向上或向下打开时,“a”的值就会受到影响。因此,如果向上打开,您就会知道“a”是正数。

    Review
    ::回顾

    Answer the following questions about parabolas.
    ::回答下列关于parabolas的问题。

    1. True or false. All parabolas are symmetrical.
    ::1. 真实的或虚假的,所有抛物线都是对称的。

    2. True or false. The  y intercept is the same as the  c value.
    ::2. 真实或虚假。拦截y与c值相同。

    3. A parabola with a positive squared value opens __________.
    ::3. 具有正正平方值的抛物线打开_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    4. A parabola with a negative squared value opens __________.
    ::4. 负正方值的抛物线打开____________________________________________________________________________________________________________________________________________

    5. What is the vertex of the parabola?
    ::5. 抛物线的顶部是什么?

    6. True or false. A parabola always forms a U shape.
    ::6. 真实的或假的,抛物线总是形成U形。

    7. True or false. The closer the  a value is to zero the wider the parabola.
    ::7. 真实或虚假,值越接近零,抛物线越大。

    8. True or false. The closer the  a value is to zero the narrower the parabola.
    ::8. 真实的或虚假的,值越接近零,抛物线越窄。

    9. True or false. The  b value determines the axis of symmetry.
    ::9. 正确或虚假。b值决定对称轴。

    10. What does the  c value indicate?
    ::10. C值表示什么?

    11. True or false. A linear equation will have a graph that is a parabola.
    ::11. 真实的或虚假的,线性方程将有一个图示,即抛物线。

    12. True or false. A quadratic equation and a linear equation will have a similar graph.
    ::12. 真实或假方程式。二次方程式和线性方程式将有类似的图表。

    Write the equations of the following graphs. Use the a  and  c values and a t-table to help you.
    ::写入下图的方程式。使用 a 和 c 值和 t 表格来帮助您 。

    13.

    lesson content

    14.

    lesson content

    15.

    lesson content

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

     

    Resources
    ::资源