Section outline

  • Vertical Angles
    ::垂直角

    Vertical angles are two non- adjacent angles formed by intersecting lines . 1 and 3 are vertical angles and 2 and 4 are vertical angles.
    ::垂直角度是横交线形成的两个非相邻角度。% 1 和% 3 是垂直角度,% 2 和% 4 是垂直角度。

    The Vertical Angles Theorem states that if two angles are vertical angles, then they are congruent .
    ::垂直角理论指出,如果两个角度是垂直角度,那么它们就是相同的。

    What if you were given two angles of unknown size and were told they are vertical angles? How would you determine their angle measures?
    ::如果给您两个大小不明的角度,并被告知它们是垂直角度呢?您将如何确定它们的角度量度?

    Examples
    ::实例

    Example 1
    ::例1

    Find the value of  x  .
    ::查找 x 的值。

    Vertical angles are congruent, so set the angles equal to each other and solve for x .
    ::垂直角度是相容的, 所以设置对等角度, 并解析 x 。

    x + 16 = 4 x 5 3 x = 21 x = 7

    ::x+16=4x-53x=21x=7=7

    Example 2
    ::例2

    Find the value of  y  .
    ::查找 y 的值 。

     

    Vertical angles are congruent, so set the angles equal to each other and solve for y .
    ::垂直角度是相容的, 所以设置对等的角度, 并为 y 求解 。

    9 y + 7 = 2 y + 98 7 y = 91 y = 13

    ::9+7=2y+987y=91y=13

    Example 3
    ::例3

    Find m 1 .
    ::找到 m1 。

    1 is vertical angles with 18 , so m 1 = 18 .
    ::1是垂直角度 与 18 。 所以m1 = 18 。

    Example 4
    ::例4

    If A B C and D E F are vertical angles and m A B C = ( 4 x + 10 ) and m D E F = ( 5 x + 2 ) , what is the measure of each angle?
    ::如果“ABC”和“DEF”是垂直角和“ABC”=(4x+10)”和“mDEF=(5x+2)”,那么每个角度的量度是多少?

    Vertical angles are congruent, so set the angles equal to each other and solve for x . Then go back to find the measure of each angle.
    ::垂直角度是相容的, 所以设置对等角度, 并解析 x。 然后返回找到每个角度的量度 。

    4 x + 10 = 5 x + 2 x = 8

    ::4x+10=5x+2x=8

    So, m A B C = m D E F = ( 4 ( 8 ) + 10 ) = 42
    ::所以,mABC=mDEF=(4(8)+10)42

    Example 5
    ::例5

    True or false: vertical angles are always less than 90 .
    ::真实或假的:垂直角度总是小于 90 。

    This is false, you can have vertical angles that are more than 90 . Vertical angles are less than 180 .
    ::这是虚假的, 您可以有超过 90 的垂直角度。 垂直角度小于 180 。

    Review
    ::回顾

    Use the diagram below for exercises 1-2. Note that N K ¯ I L .
    ::练习1-2使用下图。请注意 NK IL。

    1. Name one pair of vertical angles.
      ::列出一对垂直角度。
    1. If m I N J = 63 , find m M N L .
      ::如果MINJ=63,找到MMNL。

    For exercise 3, determine if the statement is true or false.
    ::对于第3项练习,确定该陈述是真实还是虚假。

    1. Vertical angles have the same vertex.
      ::垂直角度具有相同的顶点。
    1. If A B C and D E F are vertical angles and m A B C = ( 9 x + 1 ) and m D E F = ( 5 x + 29 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角度和“ABC”=(9x+1)”和“M”DEF=(5x+29),那么每个角度的量度是多少?
    2. If A B C and D E F are vertical angles and m A B C = ( 8 x + 2 ) and m D E F = ( 2 x + 32 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角和“ABC”=(8x+2)”和“M”DEF=(2x+32)”,那么每个角的量度是多少?
    3. If A B C and D E F are vertical angles and m A B C = ( x + 22 ) and m D E F = ( 5 x + 2 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角和“ABC”=(x+22)”和“mDEF=(5x+2)”,那么每个角度的量度是多少?
    4. If A B C and D E F are vertical angles and m A B C = ( 3 x + 12 ) and m D E F = ( 7 x ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角和“ABC”=(3x+12)”和“M”DEF=(7x)”,则每个角的量度是多少?
    5. If A B C and D E F are vertical angles and m A B C = ( 5 x + 2 ) and m D E F = ( x + 26 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角和“ABC”=(5x+2)”和“mDEF=(x+26)”,那么每个角度的量度是多少?
    6. If A B C and D E F are vertical angles and m A B C = ( 3 x + 1 ) and m D E F = ( 2 x + 2 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角度和“ABC”=(3x+1)”和“mDEF=(2x+2)”,那么每个角度的量度是多少?
    7. If A B C and D E F are vertical angles and m A B C = ( 6 x 3 ) and m D E F = ( 5 x + 1 ) , what is the measure of each angle?
      ::如果“ABC”和“DEF”是垂直角和“(6x-3)”和“(5x+1)”,那么每个角度的量度是多少?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源