章节大纲

  • Trapezoids
    ::细胞类

    A trapezoid is a quadrilateral with exactly one pair of parallel sides.
    ::甲状腺类是一种四边形, 有着一对齐的平行面。

    lesson content

    An isosceles trapezoid is a trapezoid where the non-parallel sides are congruent .
    ::等离子体类是非平行面相似的类类。

    The base angles of an isosceles trapezoid are congruent. If A B C D is an isosceles trapezoid, then A B and C D .
    ::asosceles capezoid 的底角是相似的。 如果 ABCD 是 asosceles capezoid, 则 {AB 和 {CD } 。

    The converse is also true. If a trapezoid has congruent base angles, then it is an isosceles trapezoid. The diagonals of an isosceles trapezoid are also congruent. The midsegment (of a trapezoid) is a line segment that connects the midpoints of the non-parallel sides:
    ::反之, 反之亦然 。 如果一个陷阱类具有相容的底角, 那么它就是一个等骨类底角 。 等骨类底座的对角也是相似的 。 中间部分( 类) 是连接非平行边中点的线条段 :

    There is only one midsegment in a trapezoid. It will be parallel to the bases because it is located halfway between them.
    ::捕鲸类中只有一个中间部分。 它会与基地平行, 因为它位于它们中间的半个位置 。

    Midsegment Theorem : The length of the midsegment of a trapezoid is the average of the lengths of the bases.
    ::密段定理 : 网格类的中间部分长度是基底长度的平均值 。

    If E F ¯ is the midsegment, then E F = A B + C D 2 .
    ::如果EF是中间部分,那么EF=AB+CD2。

    What if you were told that the polygon  A B C D is an isosceles trapezoid and that one of its base angles measures 38 ? What can you conclude about its other base angle
    ::如果有人告诉您多边形ABCDIS 等离子体细胞类和其基角之一测量38+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    Examples
    ::实例

    For Examples 1 and 2, use the following information:
    ::关于例1和例2,请使用以下信息:

    T R A P  is an isosceles trapezoid.
    ::TRAP是一个等骨细胞类。

    Example 1
    ::例1

    Find  m T P A .
    ::找到MTPA。

    T P Z R A Z so m T P A = 20 + 35 = 55 .
    ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Example 2
    ::例2

    Find  m Z R A .
    ::去找玛拉

    Since m P Z A = 110 , m R Z A = 70 because they form a linear pair . By the Triangle Sum Theorem, m Z R A = 90 .
    ::自 mPZA=110, mRZA=70 因为它们形成直线对。 依三角形sumTheorem, mRA=90。

    Example 3
    ::例3

    Look at trapezoid T R A P below. What is m A ?
    ::看看下面的陷阱图 是什么?

    T R A P is an isosceles trapezoid. m R = 115 also.
    ::TRAP 是一个等离子细胞类。 mR=115。

    To find m A , set up an equation.
    ::为了找到maA, 设置一个方程。

    115 + 115 + m A + m P = 360 230 + 2 m A = 360 m A = m P 2 m A = 130 m A = 65

    ::$115mA+mP=3602302A=360mA=mP2A=130mA=65

    Notice that m R + m A = 115 + 65 = 180 . These angles will always be supplementary because of the Consecutive Interior Angles Theorem.
    ::注意 mR+mA=11565 180。 这些角度将永远是补充的, 因为有连续的内脏角度定理 。

    Example 4
    ::例4

    Is Z O I D an isosceles trapezoid? How do you know?
    ::ZOID是不是一个异骨骼类动物?你怎么知道的?

    40 35 , Z O I D is not an isosceles trapezoid.
    ::4035, ZOID 不是一个等离子体。

    Example 5
    ::例5

    Find x . All figures are trapezoids with the midsegment marked as indicated.
    ::查找 x. 所有数字都是插件,中间部分标记如上所示。

      x is the average of 12 and 26. 12 + 26 2 = 38 2 = 19
    ::x是12和26.12+262=382=19的平均值

     24 is the average of x and 35.
    ::24是x和35的平均数。

    x + 35 2 = 24 x + 35 = 48 x = 13

    ::x+352=24x+35=48x=13

     20 is the average of 5 x 15 and 2 x 8 .
    ::20是5x-15和2x-8的平均值。

    5 x 15 + 2 x 8 2 = 20 7 x 23 = 40 7 x = 63 x = 9

    ::5-15+2x-82=207x-23=407x=63x=9

    Review
    ::回顾

    1. Can the parallel sides of a trapezoid be congruent? Why or why not?
    ::1. 围网类的平行面能否一致?为什么或为什么不能?

    For questions 2-8, find the length of the midsegment or missing side.
    ::对于问题2-8,请找到中间部分的长度或缺失的侧面。

    Find the value of the missing variable(s).
    ::查找缺失变量的值。

    Find the lengths of the diagonals of the trapezoids below to determine if it is isosceles.
    ::查找下面的捕捉类星体的对角长度,以确定它是否为等分形。

    1. A ( 3 , 2 ) , B ( 1 , 3 ) , C ( 3 , 1 ) , D ( 4 , 2 )
      ::A(3,3,2),B(1,3,3),C(3,-1),D(-4,4)-2
    2. A ( 3 , 3 ) , B ( 2 , 2 ) , C ( 6 , 6 ) , D ( 7 , 1 )
      ::A(-3,3),B(2,-2),C(-6,-6),D(-7,1)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。