Section outline

  • Chord Theorems
    ::和弦定理

    There are several important theorems about chords that will help you to analyze circles better.
    ::有几个关于和弦的重要理论 可以帮助你更好地分析圆圈。

    1.  Chord Theorem #1: In the same circle or congruent circles , minor arcs are congruent if and only if their corresponding chords are congruent.
    ::1. 和弦#1:在同一圆圈或正弦圆圈中,小弧在并且只有在相应的和弦一致的情况下才一致。

    In both of these pictures, B E ¯ C D ¯ and B E ^ C D ^ .
    ::在这两张照片中,BECD和BECD。

    2.  Chord Theorem #2: The perpendicular bisector of a chord is also a diameter .
    ::2. 和弦理论#2:和弦的直径也是直径。

    If A D ¯ B C ¯ and B D ¯ D C ¯ then E F ¯ is a diameter.
    ::如果ADBC和BDDC是直径

    3.  Chord Theorem #3: If a diameter is perpendicular to a chord, then the diameter bisects the chord and its corresponding arc .
    ::3. 和弦定理#3:如果直径与和弦垂直,则直径将和弦及其相应的弧分为两部分。

    If E F ¯ B C ¯ , then B D ¯ D C ¯ and B E ^ E C ^ .
    ::如果EF BC,那么BDD D和BEEC。

    4.  Chord Theorem #4: In the same circle or congruent circles, two chords are congruent if and only if they are equidistant from the center .
    ::4. 和弦4:在同一圆圈或相同圆圈中,如果而且只有在与中间的距离相等的情况下,两个和弦是相同的。

    The shortest distance from any point to a line is the perpendicular line between them. If F E = E G and E F ¯ E G ¯ , then A B ¯ and C D ¯ are equidistant to the center and A B ¯ C D ¯ .
    ::从任何一点到一条线的最短距离是它们之间的垂直线。如果FE=EG 和 EF = EG 和 EF = EG ,那么AB 和 CD 的距离就等于中间线和AB =CD 。

    What if you were given a circle with two chords drawn through it? How could you determine if these two chords were congruent?
    ::假若你们获得一个圆形,有两根和弦通过它而绘制的圆形,你们怎么确定这两根和弦是否一致呢?

     

     

    Examples
    ::实例

    Example 1
    ::例1

    Find the value of x and y .
    ::查找 x 和 y 的值。

    The diameter is perpendicular to the chord, which means it bisects the chord and the arc. Set up equations for x and y .
    ::直径直径与和弦垂直, 这意味着它将和弦和弧相切。 为 x 和 y 设置方程式 。

    ( 3 x 4 ) = ( 5 x 18 ) y + 4 = 2 y + 1 14 = 2 x       3 = y 7 = x

    :sad3x-4)(5x-18)(y+4=2y+114=2x3=y7=x)

    Example 2
    ::例2

    B D = 12 and A C = 3 in A . Find the radius .
    ::BD=12 和 AC=3 在 A. 找到半径。

    First find the radius. A B ¯ is a radius, so we can use the right triangle A B C with hypotenuse A B ¯ . From Chord Theorem #3, B C = 6 .
    ::首先找到半径。AB是一个半径, 所以我们可以使用右三角 ABC 和 AB 。 来自Chord Theorem # 3, BC=6。

    3 2 + 6 2 = A B 2 9 + 36 = A B 2 A B = 45 = 3 5

    ::32+62=AB29+36=AB2AB=45=35

    Example 3
    ::例3

    Use A to answer the following.
    ::使用 {A 来回答以下问题 。

    1. If m B D ^ = 125 , find m C D ^ .
      ::如果 mBD125, 找到 mCD。

      B D = C D , which means the arcs are congruent too. m C D ^ = 125 .
    ::BD=CD,这意味着弧也是一致的。 mCD=125\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    1. If m B C ^ = 80 , find m C D ^ .
      ::如果 mBC80, 找到 mCD。

      m C D ^ m B D ^ because B D = C D .
    ::mCD mBD 是因为BD=CD

     

    m B C ^ + m C D ^ + m B D ^ = 360 80 + 2 m C D ^ = 360 2 m C D ^ = 280 m C D ^ = 140

    ::mBCmCDmBD360802mCD3602mCD280mCD140

    Example 4
    ::例4

    Find the values of x and y .
    ::查找 x 和 y 的值。

    The diameter is perpendicular to the chord. From Chord Theorem #3, x = 6 and y = 75 .
    ::直径与和弦垂直。 从弦理论 # 3, x=6 和y= 75 。

    Example 5
    ::例5

    Find the value of x .
    ::查找 x 的值。

    Because the distance from the center to the chords is equal, the chords are congruent.
    ::因为从中间到和弦的距离是相等的, 和弦是相似的。

    6 x 7 = 35 6 x = 42 x = 7

    ::6-7=356x=42x=7

    Review
    ::回顾

    Fill in the blanks.
    ::填满空白。

    1. _ D F ¯
      ::# DF # # DF #
    2. A C ^ _
      ::AC
    3. D J ^ _
      ::DJ
    4. _ E J ¯
      ::# Ej # # Ej #
    5. A G H _
      ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
    6. D G F _
      ::DGF________________________________________________________________________________________________________________________________________________________________________________
    7. List all the congruent radii in G .
      ::列出 G 中的所有一致的 radi 。

    Find the value of the indicated arc in A .
    ::查找 A 中显示的弧值 。

    1. m B C ^
      ::mBC
    2. m B D ^
      ::mBD
    3. m B C ^
      ::mBC
    4. m B D ^
      ::mBD
    5. m B D ^
      ::mBD
    6. m B D ^
      ::mBD

    Find the value of x and/or y . Round your answer to the nearest tenth where needed.
    ::查找 x 和/ 或 Y 的值。 需要时, 将您的答复按最接近的 10 键四舍五入 。

    1. A B = 32
      ::AB=32
    2. A B = 20
      ::AB=20
    3. Find m A B ^ in Question 17. Round your answer to the nearest tenth of a degree.
      ::在问题17中找到 mAB。 将您的答复回合到最接近的 10 度。
    4. Find m A B ^ in Question 22. Round your answer to the nearest tenth of a degree.
      ::在问题22中找到 mAB 。 。 。

    In problems 25-27, what can you conclude about the picture? State a theorem that justifies your answer. You may assume that A is the center of the circle.
    ::在25-27号问题中,你能得出什么结论呢? 说明一个解释你答案的理论。你可以假设A是圆圈的中心。

    Review (Answers)
    ::回顾(答复)

    To see the answer key for this book, go to the and click on the Answer Key under the ' ' option.
    ::要查看本书的答案键, 请在“ ” 选项下点击答案键 。