9.7 圆圈内和圆圈内角
章节大纲
-
Angles On and Inside a Circle
::圆圈内外角角When we say an angle is on a circle , we mean the vertex is on the edge of the circle. One type of angle on a circle is the inscribed angle (see ). Another type of angle on a circle is one formed by a tangent and a chord .
::当我们说一个角度在圆上时,我们的意思是顶点在圆的边缘。圆上的一种角度是刻入的角度(见)。圆上另一种角度是正切和和和弦形成的一个角度。Chord/Tangent Angle Theorem : The measure of an angle formed by a chord and a tangent that intersect on a circle is half the measure of the intercepted arc .
::Chord/Tangent 角定理:由圆圆形交错的和弦形成角的度量是被截取弧的度量的一半。
::mDBA=12mABIf two angles, with their vertices on the circle, intercept the same arc then the angles are congruent .
::如果两个角度,在圆圈上有它们的脊椎, 截取同样的弧, 那么角度是相同的 。An angle is inside a circle when the vertex lies anywhere inside the circle.
::当顶点位于圆内任何地方时,一个角度在圆内。Intersecting Chords Angle Theorem: The measure of the angle formed by two chords that intersect inside a circle is the average of the measures of the intercepted arcs.
::交叉弦角理论:两个和弦在圆内交叉形成角的测量值是被截取弧的平均测量值。
::mSVR=12( mSRmT2=mSRmT2=mTVQSVT=12(mSTmR)=mSTmR2=mRVQWhat if you were given a circle with either a chord and a tangent or two chords that meet at a common point ? How could you use the measure of the arc(s) formed by those circle parts to find the measure of the angles they make on or inside the circle?
::如果给您一个圆圈,有弦和正弦,或两个和弦,在一个共同点相交?如何用这些圆圈段所形成的弧的量度来测量圆圈上或圆圈内的角?Examples
::实例Example 1
::例1Find .
::查找 x.Use the Intersecting Chords Angle Theorem to write an equation.
::使用交叉弦角定理来写一个方程式 。
::x=129712=2002=100Example 2
::例2Find .
::查找 x.Use the Intersecting Chords Angle Theorem to write an equation.
::使用交叉弦角定理来写一个方程式 。is supplementary to the angle that is the average of the given intercepted arcs. We call this supplementary angle .
::x 是给定截取弧的平均值的角的补充。 我们称之为此补充角 y 。
::y=191072=1262=63x+63180; x=117Example 3
::例3Find .
::去找妈妈吧Use the Chord/Tangent Angle Theorem. .
::使用弦/ 弦角定理。 mBAD=12mAB1212462。Example 4
::例4Find and .
::寻找 a, b, c.
::5045ma=180straight 角度ma=85
::-=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================
::8545mc=180Triangle 苏姆神话=50Example 5
::例5Find .
::找到麦贝斯Use the Chord/Tangent Angle Theorem. .
::使用弦/三角角定理。 mAEB2mDAB=2133266。Review
::回顾Find the value of the missing variable(s).
::查找缺失变量的值。-
-
-
-
-
-
-
::60
Solve for .
::解决x。-
Fill in the blanks of the proof for the Intersecting Chords Angle Theorem
::填入交叉弦角定理的空格
Given : Intersecting chords and .
::相交和弦 AC'和BD'。Prove :
::证明: ma=12 (mDCmAB)Statement Reason 1. Intersecting chords and . 1. 2. Draw
::2. 绘制 BC2. Construction 3. 3. 4. 4. 5. 5. Fill in the blanks.
::填满空白。-
If the vertex of an angle is _______________ a circle, then its measure is the average of the __________________ arcs.
::如果角度的顶点为 a 圆,则其测量值为 弧的平均值。 -
If the vertex of an angle is ________ a circle, then its measure is ______________ the intercepted arc.
::如果角度的顶点是 a 圆,那么它的量度是 被截取的弧。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -