章节大纲

  • Angles On and Inside a Circle
    ::圆圈内外角角

    When we say an angle is on a circle , we mean the vertex is on the edge of the circle. One type of angle on a circle is the inscribed angle (see ). Another type of angle on a circle is one formed by a tangent and a chord .
    ::当我们说一个角度在圆上时,我们的意思是顶点在圆的边缘。圆上的一种角度是刻入的角度(见)。圆上另一种角度是正切和和和弦形成的一个角度。

    Chord/Tangent Angle Theorem : The measure of an angle formed by a chord and a tangent that intersect on a circle is half the measure of the intercepted arc .
    ::Chord/Tangent 角定理:由圆圆形交错的和弦形成角的度量是被截取弧的度量的一半。

    m D B A = 1 2 m A B ^
    ::mDBA=12mAB

    If two angles, with their vertices on the circle, intercept the same arc then the angles are congruent .
    ::如果两个角度,在圆圈上有它们的脊椎, 截取同样的弧, 那么角度是相同的 。

    An angle is inside a circle when the vertex lies anywhere inside the circle.
    ::当顶点位于圆内任何地方时,一个角度在圆内。

    Intersecting Chords Angle Theorem: The measure of the angle formed by two chords that intersect inside a circle is the average of the measures of the intercepted arcs.
    ::交叉弦角理论:两个和弦在圆内交叉形成角的测量值是被截取弧的平均测量值。

    m S V R = 1 2 ( m S R ^ + m T Q ^ ) = m S R ^ + m T Q ^ 2 = m T V Q m S V T = 1 2 ( m S T ^ + m R Q ^ ) = m S T ^ + m R Q ^ 2 = m R V Q

    ::mSVR=12( mSRmT2=mSRmT2=mTVQSVT=12(mSTmR)=mSTmR2=mRVQ

    What if you were given a circle with either a chord and a tangent or two chords that meet at a common point ? How could you use the measure of the arc(s) formed by those circle parts to find the measure of the angles they make on or inside the circle? 
    ::如果给您一个圆圈,有弦和正弦,或两个和弦,在一个共同点相交?如何用这些圆圈段所形成的弧的量度来测量圆圈上或圆圈内的角?

    Examples
    ::实例

    Example 1
    ::例1

    Find x .
    ::查找 x.

    Use the Intersecting Chords Angle Theorem to write an equation.
    ::使用交叉弦角定理来写一个方程式 。

    x = 129 + 71 2 = 200 2 = 100
    ::x=129712=2002=100

    Example 2
    ::例2

    Find  x .
    ::查找 x.

    Use the Intersecting Chords Angle Theorem to write an equation.
    ::使用交叉弦角定理来写一个方程式 。

    x is supplementary to the angle that is the average of the given intercepted arcs. We call this supplementary angle y .
    ::x 是给定截取弧的平均值的角的补充。 我们称之为此补充角 y 。

    y = 19 + 107 2 = 126 2 = 63 x + 63 = 180 ;   x = 117

    ::y=191072=1262=63x+63180; x=117

    Example 3
    ::例3

    Find m B A D .
    ::去找妈妈吧

    Use the Chord/Tangent Angle Theorem. m B A D = 1 2 m A B ^ = 1 2 124 = 62 .
    ::使用弦/ 弦角定理。 mBAD=12mAB1212462。

    Example 4
    ::例4

    Find a ,   b , and c .
    ::寻找 a, b, c.

    50 + 45 + m a = 180 straight angle m a = 85

    ::5045ma=180straight 角度ma=85

    m b = 1 2 m A C ^ m A C ^ = 2 m E A C = 2 45 = 90 m b = 1 2 90 = 45

    ::-=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================

    85 + 45 + m c = 180 Triangle Sum Theorem m c = 50

    ::8545mc=180Triangle 苏姆神话=50

    Example 5
    ::例5

    Find m A E B ^ .
    ::找到麦贝斯

    Use the Chord/Tangent Angle Theorem. m A E B ^ = 2 m D A B = 2 133 = 266 .
    ::使用弦/三角角定理。 mAEB2mDAB=2133266。

    Review
    ::回顾

    Find the value of the missing variable(s).
    ::查找缺失变量的值。

    1. y 60
      ::60

    Solve for x .
    ::解决x。

    1. Fill in the blanks of the proof for the Intersecting Chords Angle Theorem
      ::填入交叉弦角定理的空格

    Given : Intersecting chords A C ¯ and B D ¯ .
    ::相交和弦 AC'和BD'。

    Prove : m a = 1 2 ( m D C ^ + m A B ^ )
    ::证明: ma=12 (mDCmAB)

    Statement Reason
    1. Intersecting chords A C ¯ and B D ¯ . 1.

    2. Draw B C ¯
    ::2. 绘制 BC

    2. Construction
    3.
    m D B C = 1 2 m D C ^ m A C B = 1 2 m A B ^
    3.
    4. m a = m D B C + m A C B 4.
    5. m a = 1 2 m D C ^ + 1 2 m A B ^ 5.

    Fill in the blanks.
    ::填满空白。

    1. If the vertex of an angle is _______________ a circle, then its measure is the average of the __________________ arcs.
      ::如果角度的顶点为 a 圆,则其测量值为 弧的平均值。
    2. If the vertex of an angle is ________ a circle, then its measure is ______________ the intercepted arc.
      ::如果角度的顶点是 a 圆,那么它的量度是 被截取的弧。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。