章节大纲

  • A taxi cab charges $2 per mile plus $0.20 per stopped minute in traffic. If your cab bill totals less than $10 but more than $5, which of the following could have occurred during your ride?
    ::如果你的计程车费总额不到10美元,但超过5美元,那么在您乘车时会发生以下哪一种情况?

    A. You travelled 5 miles and sat in traffic for 3 minutes.
    ::A. 你走了5英里,在交通中坐了3分钟。

    B. You travelled 2 miles and sat in traffic for 2 minutes.
    ::B. 你走了2英里,在交通中坐了2分钟。

    C. You travelled 4 miles and sat in traffic for 6 minutes.
    ::C. 你走了4英里,在交通中坐了6分钟。

    Solution for Linear Inequality
    ::解决线性不平等问题

    A linear inequality is very similar to the equation of a line, but with an inequality sign. They can be written in one of the following ways:
    ::线性不平等与线性的等式非常相似,但带有不平等标志。

    A x + B y < C A x + B y > C A x + B y C A x + B y C

    ::Ax+By <CAx+By>CAx+ByCAx+ByCAx+ByCAx+ByCAx+ByCAx+ByCAx+ByCAx+ByCAx+ByByC

    Notice that these inequalities are very similar to the standard form of a line . We can also write a linear inequality in slope-intercept form .
    ::请注意,这些不平等与一条线的标准形式非常相似。我们也可以以斜坡间接形式写出线性不平等。

    y < m x + b y > m x + b y m x + b y m x + b

    ::y < mx+bby>mx+by%mx+b > y <mx+b > > y <mx+b > >

    In all of these general forms, the A , B , C , m , and b represent the exact same thing they did with lines.
    ::在所有这些一般形式中,A、B、C、m和b代表着它们用线所做的完全相同的事情。

    An ordered pair , or point, is a solution to a linear inequality if it makes the inequality true when the values are substituted in for x and y .
    ::定购一对或一对点是线性不平等的解决办法,如果它使不平等成为真实的话,如果数值被x和y所取代的话。

    Let's determine the solutions to the following inequalities.
    ::让我们决定解决以下不平等的解决办法。

    1. Which ordered pair is a solution to 4 x y > 12 ?
      ::哪种配对是4x -y12的解决方案?

    Plug in each point to see if they make the inequality true. 
    ::在每个点上加插,看它们是否使不平等成为事实。

    a) (6, -5)
    :伤心a) (6,5)

    4 ( 6 ) ( 5 ) > 12 24 + 5 > 12 29 > 12

    b) (-3, 0)
    :伤心b) (3,0)

    4 ( 3 ) 0 > 12 12   > 12

    c) (-5, 4)
    :伤心c) (-5,4)

    4 ( 5 ) 4 > 12 20 4 > 12 24   > 12

    Of the three points, a) is the only one where the inequality holds true. b) is not true because the inequality sign is only “ greater than ,” not “ greater than or equal to .”
    ::在三点中,(a)是不平等唯一真实的。 (b) 是不真实的,因为不平等标志只是“大于”,而不是“大于或等于”。

    1. Is the point (-9, 1) a solution for y < 5 x + 1 ?
      ::点 (- 9, 1) 是 y < 5x+1 的解决方案吗 ?

    Substitute in the point values for x and y and see if the inequality holds true.
    ::代替x和y的点值,看看不平等是否真实。

    1 < 5 9 + 1 1 < 45 + 1 1 < 44

    This is false. Therefore , (-9, 1) is not a solution.
    ::这是虚假的,因此(9,1)不是解决办法。

    1. Determine 3 solutions to the inequality 2 x 7 y > 12 .
      ::确定3个解决不平等问题的办法 2x-7y12。

    Select values for x and y that would make the inequality true. If x = 2 and y = 2 , the inequality is true, 4 + 14 > 12 . Another easy point would be the origin. Testing it, we have 0 > 12 . Lastly, we could select a point where y is zero and the x value is positive. For example, the points (1, 0), (2, 0), (3, 0), etc... would all work. There are infinitely many solutions.
    ::选择 x 和 y 的值, 使不平等变为真实。 如果 x=2 和 y , 不平等是真实的, 4+14\\\ 12。 另一个简单点是源。 测试它, 我们有 0\\ 12。 最后, 我们可以选择一个 y 是零, x 值是正数的点。 例如, 点 ( 1, 0, 2, 0, 0, 3, 0) 等都会有效 。 有无限多的解决方案 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find which scenario  could have occurred during your taxi ride. 
    ::早些时候,你被要求寻找在乘出租车途中可能发生的情况。

    To solve th is  problem, we must first set up an inequality to represent the scenario.
    ::为了解决这一问题,我们必须首先建立不平等,以代表这种情景。

    5 < 2 x + 0.2 y < 10 , where x equals the miles traveled and y equals the number of minutes in stopped traffic.
    ::5<2x+0.2y<10,其中x等于行驶的里程,y等于停止交通的分钟数。

    Now let's test each of the possibilities to see if they fit the inequality.
    ::现在让我们来测试每一种可能性 看看它们是否适合不平等。

    A: 2 ( 5 ) + 0.2 ( 3 ) = 10 + 0.6 = 10.6 > 10 so this possibility could not have occurred. B: 2 ( 2 ) + 0.2 ( 2 ) = 4 + 0.4 = 4.4 < 5 so this possibility could not have occurred. C: 2 ( 4 ) + 0.2 ( 6 ) = 8 + 1.2 = 9.2 ; 5 < 9.2 < 10 so this possibility could have occurred.
    ::A:2(5)+0.2(3)=10+0.6=10.6>10,因此不可能发生这种可能性。B:2(2)+0.2(2)=4+0.4=4.4=5,不可能发生这种可能性。C:2(4)+0.2(6)=8+1.2=9.2;5 < 9.2 < 10,因此可能发生这种可能性。

    Example 2
    ::例2

    Which inequality is (-7, 1) a solution for?
    ::哪种不平等(-7,1)是解决办法?

    Plug (-7, 1) in to each equation. 
    ::每个方程式的插件( 7, 1) 。

    1. y < 2 x 1
      ::y < 2x- 1
    1 < 2 ( 7 ) 1 1   < 15
    1. 4 x 3 y 9
      ::4x-33y9
    4 ( 7 ) 3 ( 1 ) 9 28 3 9 31     9
    1. y > 4
      ::y 4

    1 > 4

    (-7, 1) is only a solution to #3,  y > 4 .
    :伤心7,1)只是解决3,y4的方法。

    E xample  3
    ::例3

    List three possible solutions for 5 x y 3 .
    ::为 5x-y3 列出三种可能的解决办法。

    To find possible solutions, plug in values to the inequality. There are infinitely many solutions. Here are three: (-1, 0), (-4, 3), and (1, 6).
    ::为了找到可能的解决方案, 将价值加到不平等中。 有很多解决方案。 这里有三个( 1, 0, (4, 3) 和 (1, 6) 。

    5 ( 1 ) 0 3 5 ( 4 ) 3 3 5 ( 1 ) 6 3 5 3 23 3     1 3

    Review
    ::回顾

    Using the four inequalities below, determine which point is a solution for each one. There may be more than one correct answer. If the answer is none, write none of these .
    ::使用下面的四种不平等, 确定哪个点是每个点的解决方案。 答案可能不止一个。 如果答案是否定的, 请不要写这些 。

    A) y 2 3 x 5
    :伤心A)y23x-5

    B) 5 x + 4 y > 20
    ::B) 5x+4y>20

    C) x y 5
    ::C) x-y5

    D) y > 4 x + 1
    ::D) y4x+1

    1. (9, -1)
    2. (0, 0)
    3. (-1, 6)
    4. (-3, -10)

    Determine which inequality each point is a solution for. There may be more than one correct answer. If the answer is none, write none of these .
    ::确定每个点的不平等是哪个点的解决方法。 答案可能不止一个。 如果答案是零, 请不要写这些 。

    A) (-5, 1)
    :伤心A) (-5,1)

    B) (4, 2)
    ::B) (4,4,2)

    C) (-12, -7)
    ::C) (12,-7)

    D) (8, -9)
    ::D) (8,-9)

    1. 2 x 3 y > 8
      ::2x-3y>8
    2. y x 4
      ::yx - 4
    3. y 6 x + 7
      ::y=6x+7 y=6x+7
    4. 8 x + 3 y < 3
      ::8+3y+33
    5. Is (-6, -8) a solution to y < 1 2 x 6 ?
      :伤心6, -8)是解决你12x -6的办法吗?
    6. Is (10, 1) a solution to y 7 x + 1 ?
      :伤心10,1)是解决y7x+1的办法吗?

    For problems 11-15, find three solutions for each inequality.
    ::对于问题11-15,每种不平等都有三种解决办法。

    1. 5 x y > 12
      ::5 - y>12
    2. y 2 x + 9
      ::y2x+9
    3. y 4
      ::y 4
    4. 3 x + 4 y < 5
      ::3x+4y5
    5. x 7
      ::x_ 7x7

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。