章节大纲

  • Mattie wants to plant some flowers in her yard. She has space for 15 plants. She buys pansies and daisies at her local garden center. The pansies are each $2.75 and the daisies are each $2.00. How many of each does she buy if she spends a total of $35.25?
    ::Mattie想在院子里种花。 她有15种植物的空间。 她在当地的园艺中心购买葡萄园和小菊。 葡萄园各为2.75美元,小菊每为2.00美元。 如果她总共花35.25美元,她要买多少?

    Solving Systems by Multiplication
    ::乘法解决系统

    It is not always the case that the coefficients of one variable in a system of linear equations are the same or opposites. When this is not the case, we may be able to multiply one of the equations by a constant so that we have opposite coefficients of one variable and can proceed to solve the system as we have previously done.
    ::在线性方程式系统中,一个变量的系数并不总是相同或相反。 如果情况并非如此,我们也许能够将一个方程式乘以一个常数,这样我们就能有一个变量的相反系数,并像我们以前所做的那样解决系统问题。

    Let's solve the following systems using linear combinations.
    ::让我们用线性组合解决以下系统。

    4 x + y = 0 x 3 y = 26

    ::4x+y=0x-3y=26

    Here we have coefficients of y that are opposite signs (one is positive and one is negative). We can get opposite values if we multiply the first equation by 3. Be careful; make sure you multiply the entire equation, including the constant, by 3:
    ::这里的 y 系数是相反的符号( 一个是正数, 一个是负数 ) 。 如果我们将第一个方程乘以3, 我们可以得到相反的值 。 注意小心; 确保您将整个方程, 包括常数乘以3 :

    3 ( 4 x + y = 0 ) 12 x + 3 y = 0

    ::3(4x+y=0)12x+3y=0

    Now we can use this new equation in our system to eliminate y and solve for x :
    ::现在我们可以使用我们系统中的这个新方程式 来消除y 并解决 x:

      12 x + 3 y = 0 +   x 3 y = 26 _   13 x = 26   x = 2

    ::12x+3y=0+ x-3y=26_ 13x=26 x=2

    Now, find y :
    ::现在,找到y:

    4 ( 2 ) + y = 0 8 + y = 0 y = 8

    ::4(2)+y=08+y=0y8

    Solution: (2, -8)
    ::解决办法伤心2,-8)

    Check your answer:
    ::检查您的答案 :

    4 ( 2 ) + ( 8 ) = 8 8 = 0 ( 2 ) 3 ( 8 ) = 2 + 24 = 26

    Note that we could have used the other equation to find y in the final step.
    ::* 注意我们本可利用另一方程式在最后一步中找到y。

    From the beginning, we could have multiplied the second equation by -4 instead to cancel out the x variable.
    ::从一开始,我们可以将第二个方程乘以 - 4, 以取消 x 变量 。

    Let's solve the following systems.
    ::让我们解决以下系统。

    2 x + 5 y = 1 y = 3 x + 21

    ::2x+5y=1y3x+21

    For this system, we must first rewrite the second equation in standard form so that we can see how the coefficients compare. If we add 3 x to both sides we get:
    ::对于这个系统,我们必须首先以标准格式重写第二个方程,这样我们可以看到系数是如何比较的。 如果我们在两边加3x,我们就会得到:

    2 x + 5 y = 1 3 x + y = 21

    ::2x+5y=13x+y=21

    Now, we can see that if we multiply the second equation by -5, the coefficients of y will be opposites.
    ::现在,我们可以看到,如果我们把第二个方程乘以5, y的系数就会相反。

    2 x + 5 y = 1 +     15 x 5 y = 105 _   13 x = 104   x = 8

    ::2x+5y=1+-15x-5y_105_-13x_104x=8

    Now, find y :
    ::现在,找到y:

    y = 3 ( 8 ) + 21 y = 24 + 21 y = 3

    ::y3(8)+21y24+21y3

    Solution: (8, -3)
    ::解决办法: (8, 3)

    Check your answer:
    ::检查您的答案 :

    2 ( 8 ) + 5 ( 3 ) = 16 15 = 1 3 = 3 ( 8 ) + 21 = 24 + 21 = 3

    Let's solve the following systems.
    ::让我们解决以下系统。

    4 x 6 y = 12 y = 2 3 x + 2

    ::4-6y12y=23x+2

    Again, we need to rearrange the second equation in this system to get it in standard form. We can do this by subtracting 2 3 x on both sides to get the following system:
    ::我们需要重新排列这个系统中的第二个方程, 才能以标准格式得到它。 我们可以通过在两边减去 23x 来做到这一点, 以获得以下系统 :

    4 x 6 y = 12 2 3 x + y = 2

    ::4 - 6y 12 - 23x+y=2

    Multiply the second equation by 6 to eliminate y :
    ::将第二个方程乘以 6 来消除y:

    6 ( 2 3 x + y = 2 )     4 x + 6 y = 12

    ::6(- 23x+y=2) - 4x+6y=12

    And add it to the first equation.
    ::加上第一个方程

    4 x 6 y = 12     +   4 x + 6 y = 12 _ 0 x = 0   0 = 0

    ::4 - 6y 12 + - 4x+6y=12_ 0x=0=0

    Here, both variables were eliminated and we wound up with 0 = 0. Recall that this is a true statement and thus this system has infinite solutions.
    ::这里,两个变量都被删除了, 我们最后以 0 = 0 结束。 提醒大家注意这是一个真实的语句, 因此这个系统有无限的解决方案 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find how many pansies and daisies Mattie  bought at the garden center if the pansies are $2.75 each and the daisies are $2.00 each and she spent a total of $35.25. She has room for 15 plants in her garden.
    ::早些时候,有人要求你找到在园艺中心买的多少小卖家和小卖家,如果每只小卖家为2.75美元,每只小卖家为2.00美元,她总共花了35.25美元。她在花园里有15种植物。

    The system of linear equations represented by this situation is:
    ::以这种情况为代表的线性方程式系统是:

    p + d = 15 2.75 p + 2 d = 35.25

    ::p+d=152.75p+2d=35.25

    If we multiply the first of these two equations by 2 , we get a new system of linear equations:
    ::如果我们将这两个方程式中的第一个方程式乘以-2, 我们就会得到一个新的线性方程式系统:

    2 p 2 d = 30 2.75 p + 2 d = 35.25

    ::-2p-2d302.75p+2d=35.25

    Now we can add these two equations to cancel out the d variable. When we do so, we get:
    ::现在我们可以添加这两个方程式来取消 d 变量。 当我们这样做时, 我们得到:

    0.75 p = 5.25 or p = 7
    ::0.75p=5.25或p=7

    Finally, we can substitute p = 7 into either of our original equations to get the value of d .
    ::最后,我们可以用p=7 来替代我们原来的方程中的任何一个方程 来获得d的值。

    7 + d = 15 or d = 8
    ::7+d=15或d=8

    Therefore Mattie buys 7 pansies and 8 daisies.
    ::所以Mattie买了7个罐子和8个菊花

    Example 2
    ::例2

    Solve the following systems using linear combinations. 
    ::使用线性组合解决以下系统。

    3 x + 12 y = 3 x 5 y = 0

    ::3x+12y3-x-5y=0

    In this problem we can just multiply the second equation by 3 to get coefficients of x which are opposites: 3 ( x 5 y = 0 ) 3 x 15 y = 0
    ::在此问题上,我们只需将第二个方程乘以3即可获得相反的x系数:3(3-x-5y=0)3x-15y=0。

        3 x + 12 y = 3 3 x 15 y = 0 _   3 y = 3 y = 1

    ::3x+12y3-3x-15y=0_-3y3y=1

    Now we can find x :
    ::现在我们可以找到x:

    3 x + 12 ( 1 ) = 3 3 x + 12 = 3 3 x = 15 x = 5

    ::3x+12(1)33x+1233x15x5

    Solution: (-5, 1)
    ::解决办法伤心5,1)

    Example 3
    ::例3

    Solve the following systems using linear combinations.
    ::使用线性组合解决以下系统。


    0.75 x + 5 y = 0 0.25 x 9 y = 0

    ::0.75x+5y=00.25x-9y=0

    For this system, we need to multiply the second equation by -3 to get coefficients of x which are opposites: 3 ( 0.25 x 9 y = 0 ) 0.75 x + 27 y = 0
    ::对于这个系统,我们需要将第二个方程乘以 - 3, 才能取得相反的 x 系数 : - 3( 0.25x- 9y=0) = 0.75x+27y=0

    0.75 x + 5 y = 0 0.75 x 9 y = 0 _   4 y = 0 y = 0

    ::0.75x+5y=0-0.75x-9y=0_-4y=0y=0

    Now we can find x :
    ::现在我们可以找到x:

    0.75 x + 5 ( 0 ) = 0 0.75 x = 0 x = 0

    ::0.75x+5(0)=00.75x=0x=0x=0

    Solution: (0, 0)
    ::解决方案: (0, 0)

    Example 4
    ::例4

    Solve the following systems using linear combinations.
    ::使用线性组合解决以下系统。


    x 3 y = 5 y = 1 3 x + 8

    ::x-3y=5y=13x+8

    This time we need to rewrite the second equation in standard form:
    ::这次我们需要以标准格式重写第二个方程式:

    x 3 y = 5 1 3 x + y = 8.

    ::x-3y=5-13x+y=8。

    Now we can multiply the second equation by 3 to get coefficients of x that are opposites:
    ::现在,我们可以将第二个方程乘以 3 来获得相反的 x 系数 :

    3 ( 1 3 x + y = 8 ) x + 3 y = 24 , Now our system is:
    :伤心3 - 13x+y=8)\\ x+3y=24)\\\ x+3y=24\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\我们的系统是:

    x 3 y = 5 x + 3 y = 24

    ::x-3y=5-x+3y=24

    When we add these equations together, both variables are eliminated and the result is 0 = 29, which is an untrue statement. Therefore, this system has no solution.
    ::当我们把这些方程式加在一起时,这两个变量都被删除,结果为0=29,这是不真实的陈述。因此,这个系统没有解决办法。

    Review
    ::回顾

    Solve the following systems using linear combinations.
    ::使用线性组合解决以下系统。

    1. .
    x 7 y = 27 2 x + y = 9
    1. .
    x + 3 y = 31 3 x 5 y = 5
    1. .
    10 x + y = 6 7 x 5 y = 13
    1. .
    2 x + 4 y = 18 x 5 y = 9
    1. .
    2 x + 6 y = 8 3 x + 2 y = 23
    1. .
    12 x y = 2 2 x + 5 y = 21
    1. .
    2 x + 4 y = 24 3 x 2 y = 26
    1. .
    3 x + 2 y = 19 5 x + 4 y = 23
    1. .
    3 x 9 y = 13 x 3 y = 7
    1. .
    8 x + 2 y = 4 3 y = 16 x + 2
    1. .
    3 x + 2 y = 3 6 x 5 y = 4
    1. .
    10 x + 6 y = 24 y = 5 3 x 4
    1. .
    1 3 x 2 3 y = 8 1 2 x 1 3 y = 12
    1. .
    6 x 10 y = 8 y = 3 5 x
    1. .
    4 x 14 y = 52 y = 2 7 x + 3

    Set up and solve a system of linear equations for each of the following word problems.
    ::为以下每个字问题建立和解决线性方程式系统。

    1. Lia is making a mixture of Chlorine and water in her science class. She needs to make 13 ml of a 60% chlorine solution from a solution that is 35% chlorine and a second solution which is 75% chlorine. How many milliliters of each solution does she need?
      ::Lia在理科课上混合了氯和水。 她需要从35%氯的溶液和75%氯的第二个溶液中 制成13毫升的60%氯溶液。 她需要多少毫升的溶液?
    2. Chelsea and Roberto each sell baked goods for their club’s fundraiser. Chelsea sells 13 cookies and 7 brownies and collects a total of $11.75. Roberto sells 10 cookies and 14 brownies and collects a total of $15.50. How much did they charge for the cookies and the brownies?
      ::切尔西和罗伯托各自为俱乐部的筹款者出售面包食品。 切尔西出售13个饼干和7个巧克力蛋糕,共收11.75美元。 罗伯托出售10个饼干和14个巧克力蛋糕,共收15.50美元。 饼干和蛋糕的收费是多少?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。