3.7 以乘数一等数取消变量的溶解系统
章节大纲
-
Mattie wants to plant some flowers in her yard. She has space for 15 plants. She buys pansies and daisies at her local garden center. The pansies are each $2.75 and the daisies are each $2.00. How many of each does she buy if she spends a total of $35.25?
::Mattie想在院子里种花。 她有15种植物的空间。 她在当地的园艺中心购买葡萄园和小菊。 葡萄园各为2.75美元,小菊每为2.00美元。 如果她总共花35.25美元,她要买多少?Solving Systems by Multiplication
::乘法解决系统It is not always the case that the coefficients of one variable in a system of linear equations are the same or opposites. When this is not the case, we may be able to multiply one of the equations by a constant so that we have opposite coefficients of one variable and can proceed to solve the system as we have previously done.
::在线性方程式系统中,一个变量的系数并不总是相同或相反。 如果情况并非如此,我们也许能够将一个方程式乘以一个常数,这样我们就能有一个变量的相反系数,并像我们以前所做的那样解决系统问题。Let's solve the following systems using linear combinations.
::让我们用线性组合解决以下系统。
::4x+y=0x-3y=26Here we have coefficients of that are opposite signs (one is positive and one is negative). We can get opposite values if we multiply the first equation by 3. Be careful; make sure you multiply the entire equation, including the constant, by 3:
::这里的 y 系数是相反的符号( 一个是正数, 一个是负数 ) 。 如果我们将第一个方程乘以3, 我们可以得到相反的值 。 注意小心; 确保您将整个方程, 包括常数乘以3 :
::3(4x+y=0)12x+3y=0Now we can use this new equation in our system to eliminate and solve for :
::现在我们可以使用我们系统中的这个新方程式 来消除y 并解决 x:
::12x+3y=0+ x-3y=26_ 13x=26 x=2Now, find :
::现在,找到y:
::4(2)+y=08+y=0y8Solution: (2, -8)
::解决办法2,-8)
Check your answer:
::检查您的答案 :Note that we could have used the other equation to find in the final step.
::* 注意我们本可利用另一方程式在最后一步中找到y。From the beginning, we could have multiplied the second equation by -4 instead to cancel out the variable.
::从一开始,我们可以将第二个方程乘以 - 4, 以取消 x 变量 。Let's solve the following systems.
::让我们解决以下系统。
::2x+5y=1y3x+21For this system, we must first rewrite the second equation in standard form so that we can see how the coefficients compare. If we add to both sides we get:
::对于这个系统,我们必须首先以标准格式重写第二个方程,这样我们可以看到系数是如何比较的。 如果我们在两边加3x,我们就会得到:
::2x+5y=13x+y=21Now, we can see that if we multiply the second equation by -5, the coefficients of will be opposites.
::现在,我们可以看到,如果我们把第二个方程乘以5, y的系数就会相反。
::2x+5y=1+-15x-5y_105_-13x_104x=8Now, find :
::现在,找到y:
::y3(8)+21y24+21y3Solution: (8, -3)
::解决办法: (8, 3)Check your answer:
::检查您的答案 :Let's solve the following systems.
::让我们解决以下系统。
::4-6y12y=23x+2Again, we need to rearrange the second equation in this system to get it in standard form. We can do this by subtracting on both sides to get the following system:
::我们需要重新排列这个系统中的第二个方程, 才能以标准格式得到它。 我们可以通过在两边减去 23x 来做到这一点, 以获得以下系统 :
::4 - 6y 12 - 23x+y=2Multiply the second equation by 6 to eliminate :
::将第二个方程乘以 6 来消除y:
::6(- 23x+y=2) - 4x+6y=12And add it to the first equation.
::加上第一个方程
::4 - 6y 12 + - 4x+6y=12_ 0x=0=0Here, both variables were eliminated and we wound up with 0 = 0. Recall that this is a true statement and thus this system has infinite solutions.
::这里,两个变量都被删除了, 我们最后以 0 = 0 结束。 提醒大家注意这是一个真实的语句, 因此这个系统有无限的解决方案 。Examples
::实例Example 1
::例1Earlier, you were asked to find how many pansies and daisies Mattie bought at the garden center if the pansies are $2.75 each and the daisies are $2.00 each and she spent a total of $35.25. She has room for 15 plants in her garden.
::早些时候,有人要求你找到在园艺中心买的多少小卖家和小卖家,如果每只小卖家为2.75美元,每只小卖家为2.00美元,她总共花了35.25美元。她在花园里有15种植物。The system of linear equations represented by this situation is:
::以这种情况为代表的线性方程式系统是:
::p+d=152.75p+2d=35.25If we multiply the first of these two equations by , we get a new system of linear equations:
::如果我们将这两个方程式中的第一个方程式乘以-2, 我们就会得到一个新的线性方程式系统:
::-2p-2d302.75p+2d=35.25Now we can add these two equations to cancel out the d variable. When we do so, we get:
::现在我们可以添加这两个方程式来取消 d 变量。 当我们这样做时, 我们得到:or
::0.75p=5.25或p=7Finally, we can substitute into either of our original equations to get the value of d .
::最后,我们可以用p=7 来替代我们原来的方程中的任何一个方程 来获得d的值。or
::7+d=15或d=8Therefore Mattie buys 7 pansies and 8 daisies.
::所以Mattie买了7个罐子和8个菊花Example 2
::例2Solve the following systems using linear combinations.
::使用线性组合解决以下系统。
::3x+12y3-x-5y=0In this problem we can just multiply the second equation by 3 to get coefficients of which are opposites:
::在此问题上,我们只需将第二个方程乘以3即可获得相反的x系数:3(3-x-5y=0)3x-15y=0。
::3x+12y3-3x-15y=0_-3y3y=1Now we can find :
::现在我们可以找到x:
::3x+12(1)33x+1233x15x5Solution: (-5, 1)
::解决办法5,1)
Example 3
::例3Solve the following systems using linear combinations.
::使用线性组合解决以下系统。
::0.75x+5y=00.25x-9y=0For this system, we need to multiply the second equation by -3 to get coefficients of which are opposites:
::对于这个系统,我们需要将第二个方程乘以 - 3, 才能取得相反的 x 系数 : - 3( 0.25x- 9y=0) = 0.75x+27y=0
::0.75x+5y=0-0.75x-9y=0_-4y=0y=0Now we can find :
::现在我们可以找到x:
::0.75x+5(0)=00.75x=0x=0x=0Solution: (0, 0)
::解决方案: (0, 0)Example 4
::例4Solve the following systems using linear combinations.
::使用线性组合解决以下系统。
::x-3y=5y=13x+8This time we need to rewrite the second equation in standard form:
::这次我们需要以标准格式重写第二个方程式:
::x-3y=5-13x+y=8。Now we can multiply the second equation by 3 to get coefficients of that are opposites:
::现在,我们可以将第二个方程乘以 3 来获得相反的 x 系数 :, Now our system is:
:3 - 13x+y=8)\\ x+3y=24)\\\ x+3y=24\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\我们的系统是:
::x-3y=5-x+3y=24When we add these equations together, both variables are eliminated and the result is 0 = 29, which is an untrue statement. Therefore, this system has no solution.
::当我们把这些方程式加在一起时,这两个变量都被删除,结果为0=29,这是不真实的陈述。因此,这个系统没有解决办法。Review
::回顾Solve the following systems using linear combinations.
::使用线性组合解决以下系统。- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
- .
Set up and solve a system of linear equations for each of the following word problems.
::为以下每个字问题建立和解决线性方程式系统。-
Lia is making a mixture of Chlorine and water in her science class. She needs to make 13 ml of a 60% chlorine solution from a solution that is 35% chlorine and a second solution which is 75% chlorine. How many milliliters of each solution does she need?
::Lia在理科课上混合了氯和水。 她需要从35%氯的溶液和75%氯的第二个溶液中 制成13毫升的60%氯溶液。 她需要多少毫升的溶液? -
Chelsea and Roberto each sell baked goods for their club’s fundraiser. Chelsea sells 13 cookies and 7 brownies and collects a total of $11.75. Roberto sells 10 cookies and 14 brownies and collects a total of $15.50. How much did they charge for the cookies and the brownies?
::切尔西和罗伯托各自为俱乐部的筹款者出售面包食品。 切尔西出售13个饼干和7个巧克力蛋糕,共收11.75美元。 罗伯托出售10个饼干和14个巧克力蛋糕,共收15.50美元。 饼干和蛋糕的收费是多少?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。