6.10 产品定理
Section outline
-
What if you were given two in polar form , such as and asked to multiply them? Would you be able to do this? How long would it take you?
::如果给您两个极形的, 例如 2 (cos2+isin2) 、 7 (cos32+isin32) , 并请求您增加它们数量呢 ? 您能够这样做吗 ? 您需要多长时间 ?Product Theorem
::产品定理Multiplication of complex numbers in polar form is similar to the multiplication of complex numbers in standard form. However, to determine a general rule for multiplication, the trigonometric functions will be simplified by applying the sum/difference identities for cosine and sine. To obtain a general rule for the multiplication of complex numbers in polar from, let the first number be and the second number be . The product can then be simplified by use of three facts: the definition , the sum identity , and the sum identity .
::以极态表示的复杂数字的乘法与标准格式的复杂数字的乘法相似。 但是,为了确定乘法的一般规则,三角函数将通过对正弦和正弦应用总和/差异特性来简化。 为了获得关于极地复杂数字乘法的乘法的一般规则,第一个数字为r1(cos1+isin1),第二个数字为r2(cos2+isin2)。 然后,产品可以通过使用三个事实来简化: i21 定义、 总和身份 oscossinsincos(), 和总和身份 sincosçsinsin()。Now that the numbers have been designated, proceed with the multiplication of these binomials.
::现在数字已经指定, 开始这些二进制的乘法。
::r2(cos2+cos2+cos2+cos2+ocos1sin}2+isin1cos2+i2+i2sin2+i2+sin1sin}2r1r2[(cos1cos2+sin1sin}2+sin1sin}2)+i(sin1cos}2+cos%2+cos%1sin2+cos%1sin2+r1r1r2[cos2+sin}+isin1}2Therefore:
::因此:
::r1 (cos1+isin1) r2(cos2+isin2) =r1r2 [cos12] +isin12]Use this general formula for the product of complex numbers to perform computations.
::对复杂数字的产物使用此通用公式进行计算。1. Find the product of complex numbers by using the Product Theorem
::1. 通过使用产品理论来查找复杂数字的产物Find the product of and
::查找3.61(cos56.3isin56.3)和1.41(cos315315315)的产物。Use the Product Theorem, .
::使用产品理论,r1(cos1+isin1) r2(cos2+isin2) =r1r2[cos12] +isin1]。
::3.61(cos56.3 56.3 56.3 )1.41(cos315 315 315 ) =(3.61) (1.41) [cos(56.3 315 ) +isin(56.3 315 ) =5.09(cos371.3 371.3 ) = 5.09(cos11.3 11.3 3 11.3 )Note: Angles are expressed unless otherwise stated.
::* 注:除另有说明外,括号为 0360。2. Find the product of
::2. 查找5(cos34+isin34)3(cos2+isin2)的产物First, calculate and
::首先,计算 r1r2= 53= 53 和12= 342= 54
::53(cos54+isin54)3. Find the product of the numbers and by first converting them to trigonometric form .
::3. 将数字r1=1+i和r2=3-i的产物首先转换成三角形,然后查找其产物。First, convert to polar form:
::首先,将 1+i 转换为极形 :
::r1=12+12=21=arctan114And now do the same with :
::现在对 3 -i 也做同样的事情:
::r2=32+(- 1)2=22=arctan-136And now substituting these values into the product theorem:
::现在用这些价值来取代产品定理:
::1×r2=(2)(2)(2)(cos) (64)+isin(64)(2)(2)(cos(12)+isin(12)))Examples
::实例Example 1
::例1Earlier, you were asked to multiply two complex numbers in polar form.
::早些时候,你被要求 乘以两个复杂的数字 以极形的形式。Since you want to multiply
::既然您想要乘数
::2(cos2+isin2),7(cos32+isin32)where ,
::r1=2,r2=7,12,2=32,r2=7,r2=7,r2=7,r2=7,r12,r2=3,r2=2,r2=2,r2=2,r2=2,r2=2,r2=2,r2=7,r2=2,r2=2,r2=2,r2=2,r2=7,r2=2,r2=2,r2=2,r2=2,r2=3you can use the equation
::您可以使用方程
::r1r2[cos(12)+isin(12)and calculate:
::计算 :
:2) [cos(2+32)+isin(2+32)]
This simplifies to:
::这简化为:
::14[14[1+i0]=14]Example 2
::例2Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。Example 3
::例3Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。
:cosisin,10(cos53+isin53)
::3(cosisin),10(cos53+isin53) =(3)(10)cis(53) =30cis83=30cis23Example 4
::例4Multiply together the following complex numbers. If they are not in polar form, change them before multiplying.
::乘以以下的复杂数字。 如果它们不是极形的, 则在乘前先修改它们 。
::2+3i,-5+11i
::2+3i,-5+11i 改为极地轴=2,y=3x5,y=11r=22+32=133.61r=(-55)2+112=146}12.08tan3256.311115114.44(3.61)(12.08)(56.31114.44)=43.61170.75Review
::回顾Multiply each pair of complex numbers. If they are not in trigonometric form, change them before multiplying.
::乘以每对复杂数字。 如果它们不是三角形的, 则在乘法前更改它们 。-
::3⁄4 ̄ ̧漯B -
:cos101010101010121212)
-
::4 (cos454545) 8 (cos626262) -
::12(cos343434) -
::5 (cos252525) (2(cos115115115)) -
::-3 -3(cos707070) -3(cos858585) -
::7(cos8585) 2(cos404040) -
:3-2(i)_________(1+1)
-
:1-一) (1+1)
-
:4-一) (3+2i)
-
:1+一)__________________________________(1+1+4i)
-
:2+2i)(3+i)
-
:1-3i)(2+i)
-
:1-一)_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(1_______________________________________(1______________________________(1________________________________________________________________________________________________________________________________________________________
-
Can you multiply a pair of complex numbers in standard form without converting to trigonometric form?
::您能否在不转换成三角形的情况下,以标准格式乘乘一对复杂数字?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -