章节大纲

  • The area of a rectangle is 30  and the length of the rectangle is 20 . What is the width of the rectangle? 
    ::矩形区域为 30 , 矩形的长度为 20 。 矩形的宽度是 多少 ?

    Dividing Square Roots
    ::分裂的广场根

    Division of radicals can be a bit more difficult than performing  other operations . The main complication is that you cannot leave any radicals in the denominator of a fraction . For this reason we have to do something called rationalizing the denominator , where you multiply the top and bottom of a fraction by the same radical that is in the denominator. This will cancel out the radicals and leave a whole number.    
    ::激进分子的分裂可能比执行其他操作要困难一些。 主要的复杂因素是不能将任何激进分子留在分数分母的分母中。 出于这个原因,我们必须做一个叫做分母合理化的事情, 也就是把分母的上下乘以分母中的同一个分母。 这将取消激进分子, 留下一个完整的数字 。

    Multiplying and Dividing Radicals
    ::乘数和分裂的激进组织

    Remember the following properties:
    ::记住下列属性:

    a b = a b and  a b b b = a b b
    ::ab=ab和abb=abb

    Simplify the following by rationalizing the denominator.
    ::使分母合理化,简化以下内容。

    1 4

    Break apart the radical by using Rule #4.
    ::使用规则4打破激进。

    1 4 = 1 4 = 1 2

    Simplify the following by rationalizing the denominator.
    ::使分母合理化,简化以下内容。

    2 3

    This might look simplified, but radicals cannot be in the denominator of a fraction. This means we need to apply Rule #5 to get rid of the radical in the denominator, or rationalize the denominator . Multiply the top and bottom of the fraction by 3 .
    ::这也许看起来很简化,但激进不能成为分母的分母。 这意味着我们需要应用规则5来消除分母中的激进,或者理顺分母。 将分母的顶部和底部乘以 3 。

    2 3 3 3 = 2 3 3

    Simplify the following by rationalizing the denominator.
    ::使分母合理化,简化以下内容。

    32 40

    Reduce the fraction, and then apply the rules above.
    ::减少分数,然后适用上述规则。

    32 40 = 4 5 = 4 5 = 2 5 5 5 = 2 5 5

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the width of the rectangle. 
    ::早些时候,有人要求你找到矩形的宽度。

    Recall that the area of a rectangle equals the length times the width, so to find the width, we must divide the area by the length.
    ::回顾矩形区域等于宽度的长度倍数,为了找到宽度,我们必须将区域除以长度。

    30 20 = 3 2 .

    Now we need to rationalize the denominator. Multiply the top and bottom of the fraction by 2 .
    ::现在我们需要使分母合理化。 乘以分数的顶部和底部乘以 2 。

    3 2 2 2 = 6 2

    Therefore , the width of the rectangle is 6 2 .
    ::因此,矩形宽度为62。

    Example 2
    ::例2

    Simplify the expression using the Radical Rules you have learned.
    ::使用您所学的激进规则来简化表达式 。

    1 2

    1 2 = 1 2 = 1 2 2 2 = 2 2

    Example 3
    ::例3

    Simplify the expression using the Radical Rules you have learned.
    ::使用您所学的激进规则来简化表达式 。

    64 50

    64 50 = 32 25 = 16 2 5 = 4 2 5

    Example 4
    ::例4

    Simplify the expression using the Radical Rules you have learned.
    ::使用您所学的激进规则来简化表达式 。

    4 3 6

    The only thing we can do is rationalize the denominator by multiplying the numerator and denominator by 6 and then simplify the fraction.
    ::我们唯一能做的就是通过将分子和分母乘以6来使分母合理化,然后简化分母。

    4 3 6 6 6 = 4 18 6 = 4 9 2 6 = 12 2 6 = 2 2

    Review
    ::回顾

    Simplify the following fractions.
    ::简化以下分数 。

    1. 4 25
    2. - 16 49
    3. 96 121
    4. 5 2 10
    5. 6 15
    6. 60 35
    7. 8 18 30
    8. 12 6
    9. 208 143
    10. 21 3 2 14

    Challenge Use all the Radical Rules you have learned to simplify the expressions.
    ::挑战 使用你学到的所有激进规则 简化表达方式

    1. 8 12 15
    2. 32 45 6 20 5
    3. 24 2 + 8 26 8
    4. 2 3 + 4 6 3
    5. 5 5 12 2 15 10

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。