9.1 直接变化
章节大纲
-
According to Newton's second law, the net force (F) of an object is equal to its mass (m) times its acceleration (a), where F is measured in Newtons, m is measured in kilograms, and a is measured in meters/sec/sec. If an object with an acceleration of 8 meters/sec/sec has a force of 24 Newtons, what is the object's force when its acceleration is 12 meters/sec/sec?
::根据牛顿的第二项法律,一个物体的净功率(F)等于其质量(m)乘以加速度(a),在牛顿测量F,米以公斤计量,米/秒/秒/秒测量。如果加速度为8米/秒/秒/秒的物体有24牛顿的功率,当加速度为12米/秒/秒时,物体的功力是什么?Direct Variation
::直接变化We say that a set of data is related directly if the independent and dependent variables both grow large or small together. For example, the equation of the line would represent a direct variation relationship. As gets bigger, so would . In fact, direct variation equation is which looks just like the equation of a line without a - intercept . We call the constant of variation and is said to vary directly with . can also be written .
::我们说,如果独立变量和依附变量同时变大或变小,一组数据是直接相关的。例如,y=2x的等式将代表一种直接的变异关系。当x变大时,y=2x的等式也会是直接的。事实上,直接变异等式是y=kx,k0,它看起来就像没有y-intercept的线的等式。我们称之为 k 变量的常数, y 据说与 x. k 可以写为 k=yx 。The variables and vary directly, and when . Let's write an equation that relates and and find when .
::变量 x 和 y 直接变化, y= 10 当 x= 2 时, y= 10 。 让我们写一个与 x 和 y 相关的方程式, 然后在 x= 9 时找到 y 。Using the direct variation equation, we can substitute in and and solve for .
::使用直接变异方程式, 我们可以替换 x 和 y , 并解决 k 。
::y=kx10=k(2)5=kTherefore , the equation is . To find when is 9, we have .
::因此,方程式是y=5x。在 x 9 时查找y,我们有y=5=9=45。Now, let's determine if the following set of data varies directly. If so, let's find the direct variation equation.
::现在,让我们来决定下一组数据是否直接变化。 如果是的话,让我们找到直接变化方程式。4 8 16 20 1 2 4 5 Looking at the set of data, the values increase. For the data to vary directly, the values would also have to increase, and they do. To find the equation, use the first point and find .
::查看数据集时, x 值会增加。要直接改变数据,y 值也会增加,而y 值也会增加。要找到方程,请使用第一点并找到 k。
::y=kx1=k(4)14=kSo, the equation for the first point is . Plug each point into the equation to make sure it works.
::所以,第一个点的方程是y=14x。 将每个点插到方程中, 以确保它有效 。The number of calories, , a person burns working out varies directly with length of time it was done, (in minutes). A 150 pound person can burn 207 calories swimming laps for 30 minutes. Let's write a variation model for as a function of . Then, let's determine how long it will take that person to burn 520 calories.
::热量、 C、 一个人的烧伤数量随时间长短而异, t (以分钟计) 150磅的人可以烧207卡路里游泳圈30分钟。让我们写C的变异模型作为 t的函数。 然后,让我们来决定这个人烧掉520卡路里需要多长时间。Plug in what you know to the direct variation model and solve for .
::插入您所知道的 直接变异模型和 K 的解答 。
::C=kt207=k(30) 150磅人的模型为C=6.9t.6.9=kTo find how long it will take to this person to burn 520 calories, solve for .
::找到这个人烧掉520卡路里 要花多长时间 解决 t
::520=6.9t 燃烧520卡路里需要75.4分钟。Examples
::实例Example 1
::例1Earlier, you were asked to find the object's force when its acceleration is 12 meters/sec/sec.
::早些时候,当物体加速度为12米/秒/秒时,你被要求寻找物体的力量。If we write Newton's second law as an equation, we get . We can now see that this is an example of a direct variation equation, where , , and . Using the direct variation equation, we can substitute in and and solve for .
::如果我们把牛顿的第二定律写成一个方程, 我们就会得到F=ma。 我们现在可以看到这是一个直接变异方程的例子, 即 y=F, m=k, 和 a=x。 使用直接变异方程, 我们可以用 F 和 a 来替代 m 。
::F=ma24=m( 8)3=mSo the mass of the object is 3 kg but we're looking for its force when its acceleration is 12 meters/sec/sec. Hence, we use the formula again.
::所以天体的质量是3公斤 但是当天体加速度是12米/秒/秒时 我们在找它的力量
::F=maF=(3)(12)F=36Therefore, the object's force is 36 Newtons.
::因此,物体的力量是36牛顿。Example 2
::例2The variables and vary directly, and when . Find the equation and determine when .
::变量 x 和 y 直接变化, 当 x\\ 8 时为 y 6 。 查找方程并确定 x y= 12 时为 y= 。First, solve for .
::首先,解决k。
::kyx=6- 8=34_y=34xNow, substitute in 12 for and solve for .
::现在,以 y 12 取代 y , 用 x 解析 。
::12=34x43=12=x16=xExample 3
::例3Determine if the set below varies directly.
::确定下一组是否直接变化。1 2 3 4 5 2 4 8 16 20 At first glance, it looks like both values increase together. Let’s check to see if is the same for each set of points.
::乍一看,它看起来两种数值都同时增长。让我们来看看 k 是否对每组点都相同。
::kyx=21=4283At this point, we can stop because the point does not have the same ratio as the first two points. Therefore, this set of data does not vary directly.
::在这一点上,我们可以停止,因为点(3,8)与前两点的比率不同,因此,这组数据没有直接变化。Example 4
::例4Taylor’s income varies directly with the number of hours he works. If he worked 60 hours last week and made $900, how much does he make per hour? Set up a direct variation equation.
::泰勒的收入与其工作时数直接不同。 如果他上周工作了60小时,赚了900美元,他每小时能挣多少? 设置一个直接的变数方程式。We want to find Taylor’s hourly wage, which is the constant of variation.
::我们想找到泰勒的小时工资,, he makes $15/hour. The equation would be .
::k=90060=15, 他每小时赚15美元。 公式是y=15x。Review
::回顾For problems 1-4, use the given and values to write a direct variation equation and find given that .
::对于问题1-4, 使用给定的 x 和 Y 值来写入直接变异方程式, 并查找 y, 给定的 x 和 Y 值 x= 12 。-
::x=3,y=15x3,y=15 -
::x=9,y3 -
::x=12,y=13 x=13 -
::x8,y=43
For problems 5-8, use the given and values to write a direct variation equation and find given that .
::对于问题 5-8, 使用给定的 x 和 y 值来写入直接变异方程, 并找到 x, 并给定的 y= 2 。-
::x=5,y=4x=5,y=4 -
::x=18,y=3xx=18,y=3 -
::x=7,y28 -
::x=23,y=56
Determine if the following data sets vary directly.
::确定以下数据集是否直接变化。- .
12 16 5 20 3 4 1 5 - .
2 10 5 6 14 70 35 42 - .
2 8 18 34 3 12 27 51 Solve the following word problems using a direct variation equation.
::使用直接变异方程式解决以下字词问题 。-
Based on her weight and pace, Kate burns 586 calories when she runs 5 miles. How many calories will she burn if she runs only 3 miles? How many miles (to the nearest mile) does she need to run each week if she wants to burn one pound (3500 calories) of body fat each week?
::根据体重和速度,凯特在跑5英里时烧了586卡路里。如果她只跑3英里,她会烧多少卡路里?如果她想每星期烧一磅(3500卡路里)体重,她每周需要跑多少英里(距离最近的里程)? -
One a road trip, Mark and Bill cover 450 miles in 8 hours, including stops. If they maintain the same pace, how far (to the nearest mile) will they be from their starting point after 15 hours of driving?
::Mark和Bill在8小时中覆盖450英里的路程,包括中途站。 如果他们保持同样的速度,在15小时的驾驶后,他们离起点(离最近的里程)还要多远? -
About three hours into a fundraising car wash, the Mathletes Club earned $240 washing 48 cars. How much was charged for each carwash? How many more cars will they have to wash to reach their goal of earning $400?
::在大约三个小时的筹款洗车中,数学俱乐部赚了240美元洗48辆车。 每洗1辆洗车要收多少钱?还要洗多少车才能达到挣400美元的目标? -
Dorothy earned $900 last week for working 36 hours. What is her hourly wage? If she works full time (40 hours) in a week how much will she make?
::Dorothy上周工作36小时挣了900美元,小时工资是多少?如果她一周内全时工作(40小时),她能挣多少钱?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -