Section outline

  • Your homework assignment is to draw the ellipse 16 ( x 2 ) 2 + 4 ( y + 3 ) 2 = 144 . What is the vertex of your graph and where will the foci of the ellipse be located?
    ::您的作业任务是绘制 16 (x-2) 2,2+4(y+3)2=144 。 您的图表的顶点是什么? 椭圆的顶点在哪里?

    Ellipses Centered at (h,k)
    ::位于 (h,k) 的椭圆

    An ellipse does not always have to be placed with its center at the origin. If the center is ( h , k ) the entire ellipse will be shifted h units to the left or right and k units up or down. The equation becomes ( x h ) 2 a 2 + ( y k ) 2 b 2 = 1 . We will address how the vertices, co-vertices, and foci change in the following problem.
    ::椭圆不一定总是以其中心位于源头。 如果中心是 (h, k) , 整个椭圆将被移动 h 单位到左边或右边, k 单位向上或向下。 等式会变成 (x-h) 2a2+(y-k) 2b2=1. 。 我们将处理以下问题的顶端、 共垂直和角变化 。

    Let's graph ( x 3 ) 2 16 + ( y + 1 ) 2 4 = 1 . Then, we'll find the vertices, co-vertices, and foci.
    ::让我们绘制图表( x-33) 216+(y+1)24=1。 然后,我们会找到顶点、 共同的顶点和顶点。

    First, we know this is a horizontal ellipse because 16 > 4 . Therefore, the center is ( 3 , 1 ) and a = 4 and b = 2 . Use this information to graph the ellipse.
    ::首先,我们知道这是一个水平椭圆, 因为 16> 4 。 因此, 中心是 (3, ~ 1) 和 a= 4 和 b= 2 。 使用此信息来绘制椭圆 。

    To graph, plot the center and then go out 4 units to the right and left and then up and down two units. This is also how you can find the vertices and co-vertices. The vertices are ( 3 ± 4 , 1 ) or ( 7 , 1 ) and ( 1 , 1 ) . The co-vertices are ( 3 , 1 ± 2 ) or ( 3 , 1 ) and ( 3 , 3 ) .
    ::绘制图示,绘制中心,然后从4个单位向右和向左,然后向上和向下移动两个单位。这也是您如何找到顶部和共同的顶部。顶部是(3+4,-1)或(7,-1)或(7,-1)和(-1,-1)或(3,1)或(3,1)和(3,-3)。

    lesson content

    To find the foci, we need to find c using c 2 = a 2 b 2 .
    ::要找到foci, 我们需要用 c2=a2 -b2 找到 c。

    c 2 = 16 4 = 12 c = 2 3

    ::c2=16-4=12c=23

    Therefore, the foci are ( 3 ± 2 3 , 1 ) .
    ::因此,核心是(323)-1。

    From this problem, we can create formulas for finding the vertices, co-vertices, and foci of an ellipse with center ( h , k ) . Also, when graphing an ellipse, not centered at the origin, make sure to plot the center.
    ::从这个问题中,我们可以创建公式来寻找具有中枢(h,k)的椭圆的顶部、共同的顶部和顶部。此外,在绘制不是以原为中心、但并非以原为中心的椭圆的图形时,确保绘制中心。

    Orientation Equation Vertices Co-Vertices Foci
    Horizontal ( x h ) 2 a 2 + ( y k ) 2 b 2 = 1 ( h ± a , k ) ( h , k ± b ) ( h ± c , k )
    Vertical ( x h ) 2 b 2 + ( y k ) 2 a 2 = 1 ( h , k ± a ) ( h ± b , k ) ( h , k ± c )

    Now, let's find the equation of the ellipse with vertices ( 3 , 2 ) and ( 7 , 2 ) and co-vertex ( 2 , 1 ) .
    ::现在,让我们来看看椭圆的等式, 包括脊椎(-3,2)和(7,2), 和共脊(2,1-1)。

    These two vertices create a horizontal major axis, making the ellipse horizontal. If you are unsure, plot the given information on a set of axes. To find the center, use the midpoint formula with the vertices.
    ::这两个顶点创建了水平主轴, 使椭圆水平。 如果您不确定, 请在一组轴上绘制给定信息。 要找到中心, 请使用顶点的中点公式 。

    ( 3 + 7 2 , 2 + 2 2 ) = ( 4 2 , 4 2 ) = ( 2 , 2 )

    The distance from one of the vertices to the center is a , | 7 2 | = 5 . The distance from the co-vertex to the center is b , | 1 2 | = 3 . Therefore, the equation is ( x 2 ) 2 5 2 + ( y 2 ) 2 3 2 = 1 or ( x 2 ) 2 25 + ( y 2 ) 2 9 = 1 .
    ::从一个顶端到中间的距离是a, +7-25. 从共同顶端到中间的距离是b, +1-23. 因此, 方程是 (x-22)252+(y-2)232=1或 (x-2)225+(y-2)29=1。

    Finally, let's graph 49 ( x 5 ) 2 + 25 ( y + 2 ) 2 = 1225 and find the foci.
    ::最后,让我们看看图49(x-5)2+25(y+2)2=1225 并找到顶部。

    First we have to get this into standard form, like the equations above. To make the right side 1, we need to divide everything by 1225.
    ::首先,我们必须把它变成标准的形式,像上面的方程式一样。为了右侧1,我们需要把所有东西除以1225。

    49 ( x 5 ) 2 1225 + 25 ( y + 2 ) 2 1225 = 1225 1225 ( x 5 ) 2 25 + ( y + 2 ) 2 49 = 1

    ::49(x-5)21225+25(y+2)21225=12251225(x-55)225+(y+2)249=1

    Now, we know that the ellipse will be vertical because 25 < 49 . a = 7 , b = 5 and the center is ( 5 , 2 ) .
    ::我们知道椭圆是垂直的 因为25<49. a=7,b=5,中心是5,2)

    lesson content

    To find the foci, we first need to find c by using c 2 = a 2 b 2 .
    ::要找到角,我们首先需要通过使用 c2=a2 -b2 来找到 c。

    c 2 = 49 25 = 24 c = 24 = 2 6

    ::c2=49-25=24c=24=26

    The foci are ( 5 , 2 ± 2 6 ) or ( 5 , 6.9 ) and ( 5 , 2.9 ) .
    ::方块是(5,-226)或(5,-6.9)和(5,2.9)。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the vertex of your graph and to determine where the foci of the ellipse will be located. 
    ::早些时候,有人要求你找到图表的顶端, 并确定椭圆的角的位置。

    We first need to get our equation in the form of ( x h ) 2 a 2 + ( y k ) 2 b 2 = 1 . So we divide both sides by 144.
    ::我们首先需要以(x-h)2a2+(y-k)2b2=1的形式获得等式。 因此,我们将双方除以144。

    16 ( x 2 ) 2 144 + 4 ( y + 3 ) 2 144 = 144 144 ( x 2 ) 2 9 + ( y + 3 ) 2 36

    ::16(x-2-2)2144+4(y+3)2144=144144(x-2)29+(y+3)236

    Now we can see that h = 2 and 3 = k or k = 3 . Therefore the origin is ( 2 , 3 ) .
    ::现在我们可以看到 h=2 和 3k 或 k3 。 因此,起源于 (2, - 3) 。

    Because 9 < 36 , we know this is a vertical ellipse. To find the foci, use c 2 = a 2 b 2 .
    ::因为9<36, 我们知道这是一个垂直的椭圆。 要找到 foci, 请使用 c2=a2 - b2 。

    c 2 = 36 9 = 27 c = 27 = 3 3

    ::c2=36-9=27c=27=33

    The foci are therefore ( 2 , - 3 + 3 3 ) and ( 2 , - 3 3 3 ) .
    ::因此,重点分别为(2,-3+33)和(2,-3-3-3-33)。

    Example 2
    ::例2

    Find the center, vertices, co-vertices and foci of ( x + 4 ) 2 81 + ( y 7 ) 2 16 = 1 .
    ::查找 (x+4) 281+(y-7) 216=1 的中心、 顶部、 共同垂直和角。

    The center is ( 4 , 7 ) , a = 81 = 9 and b = 16 = 4 , making the ellipse horizontal. The vertices are ( 4 ± 9 , 7 ) or ( 13 , 7 ) and ( 5 , 7 ) . The co-vertices are ( 4 , 7 ± 4 ) or ( 4 , 3 ) and ( 4 , 11 ) . Use c 2 = a 2 b 2 to find c .
    ::中心为(-4,7,a=81=9和b=16=4),使椭圆水平为水平。顶部为(-4,9,7)或(-13,7)和(-5,7),共同顶部为(-4,7,4)或(-4,3)和(-4,11),使用 c2=a2-b2来寻找c。

    c 2 = 81 16 = 65 c = 65

    ::c2=81-16=65c=65

    The foci are ( 4 65 , 7 ) and ( 4 + 65 , 7 ) .
    ::核心是(-4-65,7)和(-4+65,7)。

    Example 3
    ::例3

    Graph 25 ( x 3 ) 2 + 4 ( y 1 ) 2 = 100 and find the foci.
    ::图25(x-3)2+4(y-1)2=100并找到角。

    Change this equation to standard form in order to graph.
    ::将此方程式更改为标准格式以图示 。

    25 ( x 3 ) 2 100 + 4 ( y 1 ) 2 100 = 100 100 ( x 3 ) 2 4 + ( y 1 ) 2 25 = 1

    ::25(x-3)2100+4(y-1)2100=100100(x-3)24+(y-1)225=1

    center: ( 3 , 1 ) , b = 2 , a = 5
    ::中间: (3, 1, b=2, a=5)

    Find the foci.
    ::找到怪胎 找到怪胎 找到怪胎 找到怪胎 找到怪胎

    c 2 = 25 4 = 21 c = 21

    ::c2=25-4=21c=21

    The foci are ( 3 , 1 + 21 ) and ( 3 , 1 21 ) .
    ::重点领域是(3,1+21)和(3,1+21)。

    Example 4
    ::例4

    Find the equation of the ellipse with co-vertices ( 3 , 6 ) and ( 5 , 6 ) and focus ( 1 , 2 ) .
    ::查找椭圆的等离子体和共白(-3,-6)和(-5,-6)的等离子体和焦点(1,-2)的等离子体。

    The co-vertices ( 3 , 6 ) and ( 5 , 6 ) are the endpoints of the minor axis. It is | 3 5 | = 8 units long, making b = 4 . The midpoint between the co-vertices is the center.
    ::共白(-3,-6)和(5,-6)是小轴的终点。是3+5+5+8 单位长,使 b=4。共白之间的中点是中点。

    ( 3 + 5 2 , 6 ) = ( 2 2 , 6 ) = ( 1 , 6 )

    The focus is ( 1 , 2 ) and the distance between it and the center is 4 units, or c . Find a .
    ::焦点是(1,-2),它与中心之间的距离是 4 个单位,或 c. 查找 a。

    16 = a 2 16 32 = a 2 a = 32 = 4 2

    ::16=a2 - 1632=a2a=32=42

    The equation of the ellipse is ( x 1 ) 2 16 + ( y + 6 ) 2 32 = 1 .
    ::椭圆的方程式是 (x-1) 216+(y+6)232=1。

    Review
    ::回顾

    Find the center, vertices, co-vertices, and foci of each ellipse below.
    ::找到下方每个椭圆的中心、脊椎、共同的脊椎和角。

    1. ( x + 5 ) 2 25 + ( y + 1 ) 2 36 = 1
      :sadx+5)225+(y+1)236=1
    2. ( x + 2 ) 2 + 16 ( y 6 ) 2 = 16
      :sadx+2)2+16(y-6)2=16
    3. ( x 2 ) 2 9 + ( y 3 ) 2 49 = 1
      :sadx-2)29+(y-3)249=1
    4. 25 x 2 + 64 ( y 6 ) 2 = 1600
      ::25x2+64(y-6)2=1600
    5. ( x 8 ) 2 + ( y 4 ) 2 9 = 1
      :sadx-8)2+(y-4)29=1
    6. 81 ( x + 4 ) 2 + 4 ( y + 5 ) 2 = 324
      ::81(x+4)2+4(y+5)2=324
    7. Graph the ellipse in #1.
      ::在 # 1 中绘制椭圆图 。
    8. Graph the ellipse in #2.
      ::在 # 2 中绘制椭圆图 。
    9. Graph the ellipse in #4.
      ::在 # 4 中绘制椭圆图 。
    10. Graph the ellipse in #5.
      ::在 # 5 中绘制椭圆图。

    Using the information below, find the equation of each ellipse.
    ::使用以下信息,找到每个椭圆的方程。

    1. vertices: ( 2 , 3 ) and ( 8 , 3 ) co-vertex: ( 3 , 5 )
      ::顶点sad-2,-3)和(8,-3)共同顶点sad3,-5)
    2. vertices: ( 5 , 6 ) and ( 5 , 12 ) focus: ( 5 , 7 )
      ::脊椎sad5,6)和(5,12)重点sad5,7)
    3. co-vertices: ( 0 , 4 ) and ( 14 , 4 ) focus: ( 7 , 1 )
      ::共同垂直数: (0,4)和(14,4)重点: (7,1)
    4. foci: ( 11 , 4 ) and ( 1 , 4 ) vertex: ( 12 , 4 )
      ::focisad- 11,-4) 和(1,-4) 顶部sad- 12,-4)
    5. Extension Rewrite the equation of the ellipse, 36 x 2 + 25 y 2 72 x + 200 y 464 = 0 in standard form, by completing the square for both the x and y terms.
      ::扩展名在标准格式中重写椭圆(36x2+25y2-72x+200y-464=0)的方程,填写方形时使用x和y两个词。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。