10.6 以 (h, k) 居于(h, k) 处的椭圆
章节大纲
-
Your homework assignment is to draw the ellipse . What is the vertex of your graph and where will the foci of the ellipse be located?
::您的作业任务是绘制 16 (x-2) 2,2+4(y+3)2=144 。 您的图表的顶点是什么? 椭圆的顶点在哪里?Ellipses Centered at (h,k)
::位于 (h,k) 的椭圆An ellipse does not always have to be placed with its center at the origin. If the center is the entire ellipse will be shifted units to the left or right and units up or down. The equation becomes . We will address how the vertices, co-vertices, and foci change in the following problem.
::椭圆不一定总是以其中心位于源头。 如果中心是 (h, k) , 整个椭圆将被移动 h 单位到左边或右边, k 单位向上或向下。 等式会变成 (x-h) 2a2+(y-k) 2b2=1. 。 我们将处理以下问题的顶端、 共垂直和角变化 。Let's graph . Then, we'll find the vertices, co-vertices, and foci.
::让我们绘制图表( x-33) 216+(y+1)24=1。 然后,我们会找到顶点、 共同的顶点和顶点。First, we know this is a horizontal ellipse because . Therefore, the center is and and . Use this information to graph the ellipse.
::首先,我们知道这是一个水平椭圆, 因为 16> 4 。 因此, 中心是 (3, ~ 1) 和 a= 4 和 b= 2 。 使用此信息来绘制椭圆 。To graph, plot the center and then go out 4 units to the right and left and then up and down two units. This is also how you can find the vertices and co-vertices. The vertices are or and . The co-vertices are or and .
::绘制图示,绘制中心,然后从4个单位向右和向左,然后向上和向下移动两个单位。这也是您如何找到顶部和共同的顶部。顶部是(3+4,-1)或(7,-1)或(7,-1)和(-1,-1)或(3,1)或(3,1)和(3,-3)。To find the foci, we need to find using .
::要找到foci, 我们需要用 c2=a2 -b2 找到 c。
::c2=16-4=12c=23Therefore, the foci are .
::因此,核心是(323)-1。From this problem, we can create formulas for finding the vertices, co-vertices, and foci of an ellipse with center . Also, when graphing an ellipse, not centered at the origin, make sure to plot the center.
::从这个问题中,我们可以创建公式来寻找具有中枢(h,k)的椭圆的顶部、共同的顶部和顶部。此外,在绘制不是以原为中心、但并非以原为中心的椭圆的图形时,确保绘制中心。Orientation Equation Vertices Co-Vertices Foci Horizontal Vertical Now, let's find the equation of the ellipse with vertices and and co-vertex .
::现在,让我们来看看椭圆的等式, 包括脊椎(-3,2)和(7,2), 和共脊(2,1-1)。These two vertices create a horizontal major axis, making the ellipse horizontal. If you are unsure, plot the given information on a set of axes. To find the center, use the midpoint formula with the vertices.
::这两个顶点创建了水平主轴, 使椭圆水平。 如果您不确定, 请在一组轴上绘制给定信息。 要找到中心, 请使用顶点的中点公式 。The distance from one of the vertices to the center is , . The distance from the co-vertex to the center is , . Therefore, the equation is or .
::从一个顶端到中间的距离是a, +7-25. 从共同顶端到中间的距离是b, +1-23. 因此, 方程是 (x-22)252+(y-2)232=1或 (x-2)225+(y-2)29=1。Finally, let's graph and find the foci.
::最后,让我们看看图49(x-5)2+25(y+2)2=1225 并找到顶部。First we have to get this into standard form, like the equations above. To make the right side 1, we need to divide everything by 1225.
::首先,我们必须把它变成标准的形式,像上面的方程式一样。为了右侧1,我们需要把所有东西除以1225。
::49(x-5)21225+25(y+2)21225=12251225(x-55)225+(y+2)249=1Now, we know that the ellipse will be vertical because . and the center is .
::我们知道椭圆是垂直的 因为25<49. a=7,b=5,中心是5,2)To find the foci, we first need to find by using .
::要找到角,我们首先需要通过使用 c2=a2 -b2 来找到 c。
::c2=49-25=24c=24=26The foci are or and .
::方块是(5,-226)或(5,-6.9)和(5,2.9)。Examples
::实例Example 1
::例1Earlier, you were asked to find the vertex of your graph and to determine where the foci of the ellipse will be located.
::早些时候,有人要求你找到图表的顶端, 并确定椭圆的角的位置。We first need to get our equation in the form of . So we divide both sides by 144.
::我们首先需要以(x-h)2a2+(y-k)2b2=1的形式获得等式。 因此,我们将双方除以144。
::16(x-2-2)2144+4(y+3)2144=144144(x-2)29+(y+3)236Now we can see that and or . Therefore the origin is .
::现在我们可以看到 h=2 和 3k 或 k3 。 因此,起源于 (2, - 3) 。Because , we know this is a vertical ellipse. To find the foci, use .
::因为9<36, 我们知道这是一个垂直的椭圆。 要找到 foci, 请使用 c2=a2 - b2 。
::c2=36-9=27c=27=33The foci are therefore and .
::因此,重点分别为(2,-3+33)和(2,-3-3-3-33)。Example 2
::例2Find the center, vertices, co-vertices and foci of .
::查找 (x+4) 281+(y-7) 216=1 的中心、 顶部、 共同垂直和角。The center is and , making the ellipse horizontal. The vertices are or and . The co-vertices are or and . Use to find .
::中心为(-4,7,a=81=9和b=16=4),使椭圆水平为水平。顶部为(-4,9,7)或(-13,7)和(-5,7),共同顶部为(-4,7,4)或(-4,3)和(-4,11),使用 c2=a2-b2来寻找c。
::c2=81-16=65c=65The foci are and .
::核心是(-4-65,7)和(-4+65,7)。Example 3
::例3Graph and find the foci.
::图25(x-3)2+4(y-1)2=100并找到角。Change this equation to standard form in order to graph.
::将此方程式更改为标准格式以图示 。
::25(x-3)2100+4(y-1)2100=100100(x-3)24+(y-1)225=1center:
::中间: (3, 1, b=2, a=5)Find the foci.
::找到怪胎 找到怪胎 找到怪胎 找到怪胎 找到怪胎
::c2=25-4=21c=21The foci are and .
::重点领域是(3,1+21)和(3,1+21)。Example 4
::例4Find the equation of the ellipse with co-vertices and and focus .
::查找椭圆的等离子体和共白(-3,-6)和(-5,-6)的等离子体和焦点(1,-2)的等离子体。The co-vertices and are the endpoints of the minor axis. It is units long, making . The midpoint between the co-vertices is the center.
::共白(-3,-6)和(5,-6)是小轴的终点。是3+5+5+8 单位长,使 b=4。共白之间的中点是中点。The focus is and the distance between it and the center is 4 units, or . Find .
::焦点是(1,-2),它与中心之间的距离是 4 个单位,或 c. 查找 a。
::16=a2 - 1632=a2a=32=42The equation of the ellipse is .
::椭圆的方程式是 (x-1) 216+(y+6)232=1。Review
::回顾Find the center, vertices, co-vertices, and foci of each ellipse below.
::找到下方每个椭圆的中心、脊椎、共同的脊椎和角。-
:x+5)225+(y+1)236=1
-
:x+2)2+16(y-6)2=16
-
:x-2)29+(y-3)249=1
-
::25x2+64(y-6)2=1600 -
:x-8)2+(y-4)29=1
-
::81(x+4)2+4(y+5)2=324 -
Graph the ellipse in #1.
::在 # 1 中绘制椭圆图 。 -
Graph the ellipse in #2.
::在 # 2 中绘制椭圆图 。 -
Graph the ellipse in #4.
::在 # 4 中绘制椭圆图 。 -
Graph the ellipse in #5.
::在 # 5 中绘制椭圆图。
Using the information below, find the equation of each ellipse.
::使用以下信息,找到每个椭圆的方程。-
vertices:
and
co-vertex:
::顶点-2,-3)和(8,-3)共同顶点
3,-5)
-
vertices:
and
focus:
::脊椎5,6)和(5,12)重点
5,7)
-
co-vertices:
and
focus:
::共同垂直数: (0,4)和(14,4)重点: (7,1) -
foci:
and
vertex:
::foci- 11,-4) 和(1,-4) 顶部
- 12,-4)
-
Extension
Rewrite the equation of the ellipse,
in standard form, by completing the square for both the
and
terms.
::扩展名在标准格式中重写椭圆(36x2+25y2-72x+200y-464=0)的方程,填写方形时使用x和y两个词。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -