章节大纲

  • Ears are amazing.
    ::耳朵是惊人的。

    The average human ear can just as easily recognize the whisper of the person in the next chair as the roar of a jet plane on takeoff. Most people know that, but many people do not realize that the difference in power between the two is approximately 10,000,000,000 times!
    ::普通人的耳朵可以很容易地辨识出在下一椅子上的人的耳语,就像起飞时喷气式飞机的咆哮一样。 大多数人知道这一点,但许多人不知道两者之间的权力差异大约是10,000万倍!

    If you look up the decibel ratings of these two sounds, you will find that the quietest whispers are apx 10 db, and that a 747 on takeoff can hit 120 db.
    ::如果你查查这两个声音的分解率, 你会发现最安静的低语是Apx 10 db, 起飞时747分可以击中120 db。

    That's only a difference of 100 db, how can that be the same as 10 BILLION times?
    ::那只是100公分的差数, 怎么可能和10次BILLION一样呢?

    Logarithmic Functions
    ::对对数函数

    Every exponential expression can be written in logarithmic form. For example, the equation x = 2 y is written as follows: y = log 2 x . In general, the equation log b n = a is equivalent to the equation b a = n . That is, b is the base , a is the exponent , and n is the power, or the result you obtain by raising b to the power of a. Notice that the exponential form of an expression emphasizes the power, while the logarithmic form emphasizes the exponent. More simply put, a logarithm (or “log” for short) is an exponent.
    ::每个指数表达式都可以以对数形式写入。 例如, 公式 x = 2y 的写法如下: y = log2x。 一般来说, 等式logbn = a 等于 等式 ba = n 。 也就是说, b 是 基数, a 是 引号, n 是 功率, 或通过调出 b 到 a 的功率获得的结果 。 请注意, 一种表达式的指数形式强调功率, 而对数表则强调 exponent 。 更简单地说, logarithm (或简称的“log”) 是 expent 。

    lesson content

    Perhaps the most common example of a logarithm is the Richter scale, which measures the magnitude of an earthquake. The magnitude is actually the logarithm base 10 of the amplitude of the quake. That is, m = log 10 A . This means that, for example, an earthquake of magnitude 4 is 10 times as strong as an earthquake with magnitude 3. We can see why this is true of we look at the logarithmic and exponential forms of the expressions: An earthquake of magnitude 3 means 3 = log 10 A . The exponential form of this expression is 10 3 = A . Thus the amplitude of the quake is 1,000. Similarly, a quake with magnitude 4 has amplitude 10 4 = 10,000.
    ::也许最常见的对数示例是测算地震规模的Richter尺度。 测算地震规模的 Richter 尺度。 数值实际上是地震振幅的对数基 10 。 也就是说, m = log10A 。 这意味着, 例如, 4 级的地震比 3 级的地震强十倍于 3 级的地震 。 我们可以看到,为什么我们看这些表达式的对数和指数形式是真实的: 3 级的地震 3 表示3 = log10A 。 这个表达式的指数形式是 103 = A 。 因此, 地震的振幅是 1 000 。 同样, 4 级的地震有 104 = 10 000 。

    Solving Logarithmic Equations
    ::解析对数等量

    In general, to solve an equation means to find the value(s) of the variable that makes the equation a true statement. To solve log equations, we have to think about what “log” means .
    ::一般来说, 要解决方程式, 需要找到使方程式成为真实语句的变量值。 要解决日志方程式, 我们必须思考“ log” 的含义 。

    Consider the equation log 2 x = 5 . What is the exponential form of this equation?
    ::考虑方程式 log2x = 5。 这个方程式的指数形式是什么 ?

    The equation log 2 x = 5 means that 2 5 = x . So the solution to the equation is x = 2 5 = 32.
    ::方程式 log2x = 5 表示 25 = x 。 方程式的解决方案是 x = 25 = 32。

    In some log equations, both sides of the equation contain a log. To solve these equations, use the following rule: log b f ( x ) = log b g ( x ) → f ( x ) = g ( x ).
    ::在某些日志方程式中, 公式的两边都包含一个日志。 要解析这些方程式, 请使用以下规则 : logbf( x) = logbg( x) = logbg( x) f( x) = g( x) 。

    In other words, set the bases equal and solve for the variable in the exponent by treating the exponents on both sides of the equation as simple polynomials.
    ::换句话说,将方程两侧的推手作为简单的多面体来对待,以此来设定标注变量的等值和求解基数。

    Examples
    ::实例

    Example 1
    ::例1

    Rewrite each exponential expression as a log expression.
    ::将每个指数表达式重写为日志表达式 。

    In order to rewrite an expression, you must identify its base, its exponent, and its power.
    ::要重写一个表达式, 您必须确定它的底部、 亮点和权力 。

    1. 3 4 = 81

    The 3 is the base, so it is placed as the subscript in the log expression. The 81 is the power, and so it is placed after the “log”. Thus we have: 3 4 = 81 is the same as log 3 81 = 4. To read this expression, we say “the logarithm base 3 of 81 equals 4.” This is equivalent to saying “ 3 to the 4 th power equals 81.”
    ::3 是基数, 因此它被放在对数表达式中的下标。 81 是权力, 因此它被放在“ log” 之后。 因此, 我们有: 34= 81 是相同的 aslog 381 = 4. 读这个表达式, 我们说“ 81 中的对数基 3 等于 4. ” , 这相当于 “ 3 到 4 ower 等于 81 ” 。

    1. b 4 x = 52
      ::b4x=52

    The b is the base, and the expression 4x is the exponent, so we have:  log b 52 = 4 x . We say, “log base b of 52, equals 4 x .”
    ::b 是基数, 4x表达式是指数, 所以我们有: logb52 = 4x。 我们说, “ log b b of 52, 等于 4x ” 。

    Example 2
    ::例2

    Evaluate the function f ( x ) = log 2 x for the following values.
    ::为以下值评价函数 f(x) = log2x。

    1. x = 2   
      ::x=2x=2

    If x = 2 , we have:  f ( x ) = log 2 x f (2) = log 2 2.
    ::如果 x=2, 我们有: f(x) = log2xf(2) = log22。

    To determine the value of log 2 2, you can ask yourself: “2 to what power equals 2?” Answering this question is often easy if you consider the exponential form: 2 ? = 2.
    ::要确定 log22 的值,你可以问自己:“2 至 2 等于 2 ?” 回答这个问题通常很容易,如果你考虑指数形式: 2?= 2。

    The missing exponent is 1. So we have f (2) = log 2 2 = 1.
    ::缺少的指数是 1, 所以我们有f(2) = log22 = 1。

    1. x = 1
      ::x=1 x=1

    If x = 1 , we have: f ( x ) = log 2 x f (1) = log 2 1. As we did in (a), we can consider the exponential form: 2 ? = 1.
    ::如果x=1,我们有:f(x) = log2xf(1) = log21。正如我们在(a) 中所做的那样,我们可以考虑指数形式: 2?= 1。

    The missing exponent is 0. So we have f (1) = log 2 1 = 0.
    ::缺少的指数是 0。 所以我们有f(1) = log21 = 0。

    1. x = 2  
      ::x% 2

    If x = 2 , we have: f ( x ) =log 2 x f (-2) = log 2 -2. Again, consider the exponential form: 2 ? = -2.
    ::Ifx=% 2, 我们有: f( x) =log2xf( 2) = log2xf( 2) = log2- 2。 请再次考虑指数表 : 2? = - 2 。

    There is no such exponent. Therefore f (-2) = log 2 -2 does not exist .
    ::没有这样的指数。 因此f( 2) = log2-2 不存在 。

    Example 3
    ::例3

    Solve  the equation log 2 (3 x -1) = log 2 (5 x - 7) for x.
    ::解决x的方程式对数对数2( 3x-1) = log2( 5x - 7) 。

    Because the logarithms have the same base (2), the arguments of the log (the expressions 3 x - 1 and 5 x - 7) must be equal . So we can solve as follows:
    ::因为对数有相同的基数(2), 日志的参数( 表达式 3x-1 和 5x-7) 必须相等 。 所以我们可以解析如下 :

        log 2 (3 x -1) = log 2 (5 x - 7)
        3 x - 1 = 5 x - 7
        +7 |+7
        3 x + 6 = 5 x
        -3 x
        6 = 2 x
        x = 3

    Example 4
    ::例4

    Rewrite the following logarithmic expressions in exponential form.
    ::以指数形式重写以下对数表达式。

    1. log 10 100 = 2
      ::log10100 = 2

    The base is 10, and the exponent is 2, so we have 10 2 = 100.
    ::基数是10, 指数是2, 所以我们有102=100。

    1. log b w = 5
      ::logbw = 5

    The base is b, and the exponent is 5, so we have  b 5 = w .
    ::基数是b, 指数是5, 所以我们有b5=w。

    Example 5
    ::例5

    Solve each equation for x .
    ::为 x 解决每个方程式 。

    1. log x = 3
      ::log4 x = 3

    Writing the equation in exponential form gives us the solution: x = 4 3 = 64.
    ::以指数形式写出方程式, 给我们提供了答案: x = 43 = 64 。

    1. log 5 (x + 1) = 2
      ::log5(xx+1) = 2

    Writing the equation in exponential form gives us a new equation: 5 2 = x + 1.
    ::以指数形式写入方程式时, 给我们提供了一个新的方程式: 52 = x + 1 。

    We can solve this equation for x :
    ::我们可以解析 x 的这个方程式 :

        5 2 = x + 1
        25 = x + 1
        x = 24
    1. 1 + 2log 3 (x - 5) = 7
      ::1 + 2log3(x-5) = 7

    First, we have to isolate the log expression:
    ::首先,我们必须分离日志表达式:

        1 + 2log 3 ( x - 5) = 7
        2log 3 ( x - 5) = 6
        log 3 (x - 5) = 3

    Now, we can solve the equation by rewriting it in exponential form:
    ::现在,我们可以通过重写指数形式来解决方程式问题:

        log 3 (x - 5) = 3
        3 3 = x - 5
        27 = x - 5
        x = 32

    Review
    ::回顾

    1. State the expression in English: l o g 3 243 .
      ::英文表示: log3243。
    2. Write the given equation in logarithmic form: ( 1 3 ) 5 = 243 .
      ::以对数表写入给定方程式: (13)- 5=243。
    3. Determine if the two equations below are equivalent and label them according to function family: y = l o g a x and x = a y .
      ::确定以下两个方程式是否相等, 并按函数家族 y=logax 和 x=ay 标记它们 。

    Evaluate the logarithms:
    ::评估对数 :

    1. l o g 4 625
      ::log4625
    2. l o g 6 64
      ::log664 log664
    3. l o g 3 216
      ::log3216

    Evaluate each logarithm at the indicated value of x.
    ::按 x 的表示值评价每项对数。

    1. f ( x ) = l o g 2 x for x = 32
      :伤心fx) = x= 32 的log2x
    2. f ( x ) = l o g 3 x for x = 1
      :伤心 fx) = x=1 的log3x
    3. f ( x ) = l o g 4 x for x = 2
      :伤心xx) = x=2 的log4x
    4. f ( x ) = l o g 10 x for x = 1 100
      :伤心fx) = log10x x= 1100

    Solve for x :
    ::解决 x:

    1. l o g 3 ( 2 x + 2 ) = l o g 3 ( x 4 )
      ::对数 3 (2x+2) = log3 (x- 4)
    2. l o g 7 ( x 3 ) = l o g 7 ( x 4 )
      ::log7(x3) =log7(x- 4)
    3. l o g 4 8 x 3 = l o g 4 8
      ::log48x3 = log48
    4. l o g 5 ( x + 9 ) = l o g 5 3 ( x 2 )
      ::log5(x+9) = log53(x-2)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

     

    Resources
    ::资源