10.10 一般二次赤道
章节大纲
-
You and your friends are playing the game Name the Conic Section. You draw a card with the equation . What type of conic section is represented by this equation?
::您和朋友正在玩游戏 名称 二次曲线部分 。 您用公式 x2 - 4x- 8y+12=0 绘制一张牌。 此公式代表哪种二次曲线部分 ?Conic Equations
::二次曲线The equation of any conic section can be written in the form , which is the general second-degree equation in terms of and . For all the you have seen so far, because all axes were either horizontal or vertical. When a conic is in this form, you have to complete the square to get it into standard form.
::任何二次曲线部分的方程式可以以 Ax2+Bxy+Cy2+Dx+Ey+F=0 的形式写成,这是以 x 和 y 表示的一般二度方程式。对于迄今所见的所有方程式,B=0,因为所有轴都是水平或垂直的。如果二次曲线是这种形式,则必须填写方形,才能将其变成标准格式。Standard Form of Conic Sections with Center
::与中(h,k)Horizontal Axis Vertical Axis Circle Parabola Ellipse Let's determine the type of conic section and rewrite the equation in standard form.
::让我们确定二次曲线区域 x2+y2 - 6x+10y - 6=0 的类型, 并以标准格式重写方程式 。Start by rewriting the equation with the terms and terms next to each other and moving the constant to the other side of the equation.
::开始重写方程式, 以 x 条件和 y 条件相邻, 并将常数移动到方程式的另一侧 。
::x2+y2 - 6x+10y-6=0(x2 - 6x)+(y2+10y)=6Now, complete the square for both the and terms. To complete the square, you need to add to both sides of the equation.
::现在, 完成 x 和 y 条件的正方形。 要完成正方形, 您需要在方程的两侧添加 (b2) 2 。
:x2-6x+9)+(y2+10y+25)=6+9+25(x-3)2+(y+5)2=40
By looking at the standard forms above, we can see that this is a circle. Another clue as to what type of conic it is, is that and are equal in the general second-degree equation.
::通过查看上面的标准表格,我们可以看到这是一个圆圈。另一个关于什么类型的二次曲线的线索是A和C在一般二度方程中是相等的。Now, let's determine the type of conic section and rewrite the equation in standard form.
::现在,让我们来决定二次曲线部分的类型 20x2 - 20y2 - 80x+240y+320=0, 并以标准格式重写方程式 。Using the logic from the previous problem , we can conclude that this conic is not a circle. It is also not a parabola because it has both the and terms. Rewrite the equation, grouping the terms together, terms together, and moving the constant over to the other side. Then, pull out the GCF of each set of terms.
::使用前一个问题的逻辑, 我们可以得出这样的结论: 这个二次曲线不是圆形。 它也不是抛物线, 因为它有 x2 和 y2 两个条件。 重写方程式, 将 x 术语组合在一起, y 术语组合在一起, 并将常数移到另一边 。 然后, 将每组条件的 GFSP 拔出 。
::20x2 - 20y2 - 20y2 - 90x+240y+320=020x2 - 80x - 20y2+240y_ 320(x2 - 4x) - 20(y2 - 12y)______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Now, complete the square for the and terms. When determining what constant will “complete the square” for each grouping, don’t forget to multiply the constant by the number outside the parenthesis before adding it to the other side.
::现在, 完成 x 和 y 条件的方块 。 在确定每个组群的常数将“ 完成方块 ” 时, 不要忘记将常数乘以括号外的数, 然后再添加到另一边 。
::20x2-4x)-20(y2-12y)=-32020(x2-4x+4)-20(y2-12y+36)=-320+80-72020(x-2-2)2-960-20(y-6)2-960=-960-960-(x-2)2-248+(y-6)248=1(y-6)248-(x-2)248=(x-2)248=1We now see that this conic is a hyperbola. Going back the original equation, is negative. In order for a general second-degree equation to be a hyperbola, or (not both) must be negative. If and are both positive or negative and not equal, the equation represents an ellipse.
::我们现在看到这个二次曲线是一个超大曲线。 回到原来的方程, C是负的。 要使一般二度方程式变成超大曲线, A 或 C (不是两者兼有)必须是负的。 如果 A 和 C 是正或负的, 而不是等同的, 这个方程式代表椭圆。Finally, let's write the equation of the conic below.
::最后,让我们写下下面的二次曲线的方程式。Just by looking at the graph, we know this is a horizontal ellipse. The standard equation for this ellipse is . The center is , the major axis is 14 units long, making , and the minor axis is 6 units long, making . The equation is therefore or .
::通过查看图表,我们知道这是一个水平椭圆。 这个椭圆的标准方程式是 (x-h) 2a2+(y-k) 2b2=1. 中心是 (- 3, 6) , 主轴是 14 个单位, 使 a= 7 , 小轴是 6 个单位, 使 b= 3 。 因此, 这个方程式是 (x- (-3) 272+(y-6) 232=1 或 (x+3)249+(y-6)24=1 。Examples
::实例Example 1
::例1Earlier, you were asked to determine the type of conic section represented by the equation .
::早些时候,您被要求确定方程式 x2 - 4x - 8y+12=0 所代表二次曲线段的类型 。Start by rewriting the equation with the terms and terms next to each other.
::开始重写方程式, 以 x 条件和 Y 条件相邻 。
::x2- 4x=8y- 12Now, complete the square for the terms. To complete the square, we need to add 4 to both sides of the equation.
::现在, 完成 x 条件的方块。 要完成方块, 我们需要在方块的两侧增加 4 个 。
:x2-4x+4)=8y-12+4(x-2)2=8y-8
Finally, factor out the LCD from the right side of the equation.
::最后,从方程的右侧计出液晶显示器。
:x-2)2=8(y-1)
By looking at the standard forms above, we can see that this is a parabola.
::通过看上面的标准表格,我们可以看到这是一个抛物线。For Examples 2 & 3, determine the type of conic section and rewrite each equation in standard form.
::对于例2和例3,确定二次曲线段的类型,并以标准格式重写每个方程。Example 2
::例2
::9x2+16y2+18x-135=0Complete the square. Ellipse.
::完成方形 椭圆形
::9x2+166y2+18x-135=09x2+18x+166y2=1359(x2+2x+1)+16y2=135+99(x+1)2+16y2=144(x+1)216+y29=1Example 3
::例3
::y2 - 3x-8y+10=0Complete the square. Parabola.
::完成广场 帕拉波拉
::y2 - 3x - 8y+10=0y2 - 8y - 3x_ 3x_ 10y2 - 8y+16=3x - 10+16(y - 4)2=3x+6(y - 4)2=3(x+2)Example 4
::例4Write the equation of the conic below.
::在下面写下二次曲线的方程 。This is a circle because the distance around the center is the same. The center is and the radius is 5. The equation is .
::这是一个圆, 因为中心周围的距离相同。 中心是 0, ~ 4, 半径是 5 。 方程式是 x2+(y+4) 2= 25 。Review
::回顾-
In the general conic equation, why does
B
have to equal zero in order to create a conic?
::在一般二次等式中,为什么B必须等于零才能产生二次等式?
Find the equation of each conic section below.
::查找以下每个二次曲线段的方程。Rewrite each equation in standard form, classify the conic, and find the center. If the conic is a parabola, find the vertex.
::以标准格式重写每个方程式, 分类二次曲线, 并找到中心 。 如果二次曲线是抛物线, 请找到顶点 。-
::3x2+3y2-6x+9y-14=0 -
::6x2+12x-y+15=0 -
::x2+2y2+4x+2y-27=0 -
::x2-y2+3x-2y-43=0 -
::y2-8x-6y+49=0 -
::- 64x2+225y2-256x-3150y-3631=0
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
In the general conic equation, why does
B
have to equal zero in order to create a conic?